• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 73
  • 14
  • 10
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 225
  • 225
  • 89
  • 82
  • 72
  • 41
  • 40
  • 39
  • 37
  • 37
  • 34
  • 30
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

New Technologies to Improve the Transient Response of Buck Converters

Meyer, Eric David 01 February 2010 (has links)
As the speed and power demands on Buck converters continue to increase, it has become time to replace the linearly-controlled conventional Buck converter. Digital circuits, such as microprocessors, are requiring higher dynamic currents, at lower voltages, than ever before. Traditionally, such Buck converters have been controlled by linear voltage-mode or current-mode control methods. While these controllers offer such advantages as fixed switching frequencies and zero steady-state error, their reaction speed is inherently limited by their bandwidth which is a fraction of the converter switching frequency. Therefore, to improve the transient response of a Buck converter in a practical manner, four novel ideas are presented in this thesis. The first contribution is an analog “charge balance controller”. The control method utilizes the concept of capacitor charge balance to achieve a near-optimal transient response for Buck converters undergoing a rapid load change. Unlike previous work, the proposed controller does not require expensive and/or slow analog multipliers/dividers. In addition, the nominal inductance value is not required by the proposed controller. Simulation and experimental results demonstrate a significant improvement in transient performance over that of a linear voltage-mode controller. For low duty cycle applications, the unloading transient performance of a Buck converter tends to be poor when compared to the corresponding loading transient performance. Therefore, the second contribution is an auxiliary circuit and an analog auxiliary controller which drastically improves the performance of a Buck converter undergoing an unloading transient. Significant overshoot reduction was observed over that of a linearly-controlled conventional Buck converter. The third contribution is a digital implementation of the aforementioned “charge balance control” concept. Through digital implementation the control law is extended to include load-line regulation. Unlike previous work, large lookup tables are not required to perform complex mathematical functions, thus the number of required gates is significantly reduced. The final contribution is a digital implementation of the “charge balance controller” capable of operating with the previously-mentioned auxiliary circuit. This complete solution is capable of improving the voltage deviation caused by loading and unloading transients. In addition, the combined auxiliary circuit and control law is extended to load-line regulation applications. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2010-01-31 23:01:24.606
52

DIGITALLY CONTROLLED ENERGY HARVESTING POWER MANAGEMENT SYSTEM

DICKSON, ANDREW 20 March 2012 (has links)
This thesis discusses a power electronics module (PEM) that is used to extract power from a human energy harvesting generator according to the user’s desired input power, and stores all of the extracted energy into an appropriately sized battery while staying within the charging limitations of the battery. The PEM can temporarily store the peak power produced by the generator allowing the reduction in the size of the battery required to the average power production level of the generator. The battery’s safety and longevity is maintained by charging them at the constant current and constant voltage rate. The design of the two-stage PEM, the requirements of the Energy Storage Capacitor (ESC) and battery size are discussed. The two controllers that control the PEM are explained and the different operating modes of the controllers are reviewed. A two-stage prototype digitally controlled average current mode control Boost converter and average current mode controlled Buck converter were designed and experimental waveforms were captured to test and validate the control theories used in the PEM. A Voltage Adaptive Gain compensator was used to optimize the closed loop response of both the Boost and Buck converters over their respective output and input voltage ranges. The DC efficiency of the prototype was measured with the peak efficiency of the Boost converter equal to 93% and the peak efficiency of the Buck converter measured at 93.7%. The total PEM system efficiency was measured at 87.9% at an input power level of 10 watts. The AC efficiency of the PEM was also measured with a peak efficiency of 91% with Vin = 15 V at Rin = 60 Ω. The software considerations for an embedded system, including power consumption and timing of real time events are reviewed. A software flow chart and timing diagram are provided to help visualize the sequence of the code. A design chart for selection of the size and voltage rating of the ESC was created. An experimental comparison of a single stage design without energy storage capability and the current PEM design was performed, with a power limited source, in order to show the effectiveness of the PEM and controllers at maximizing the power extraction from the generator. The PEM design was able to extract 50% more power than the single stage converter without energy storage capability. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2012-03-20 01:25:20.986
53

Design of direct digital frequency synthesizer for wireless applications

Chimakurthy, Lakshmi Sri Jyothi. Dai, Foster. January 2005 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references.
54

Advanced current-mode control techniques for DC-DC power electronic converters

Wan, Kai, January 2009 (has links) (PDF)
Thesis (Ph. D.)--Missouri University of Science and Technology, 2009. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed May 4, 2009) Includes bibliographical references.
55

Digital control of pulse width modulated inverters for high performance uninterruptible power supplies

Marwali, Mohammad Nanda Rahmana, January 2004 (has links)
Thesis (Ph. D.)--Ohio State University, 2004. / Title from first page of PDF file. Document formatted into pages; contains xviii, 224 p.; also includes graphics. Includes bibliographical references (p. 199-211).
56

Digital implementation of direction-of-arrival estimation techniques for smart antenna systems

Abusultan, Monther Younis. January 2010 (has links) (PDF)
Thesis (MS)--Montana State University--Bozeman, 2010. / Typescript. Chairperson, Graduate Committee: Brock LaMeres. Includes bibliographical references (leaves 92-96).
57

Microcomputer control of excitation of a synchronous machine

Lo, Kin-chung. January 1981 (has links)
Thesis (M.Phil.)--University of Hong Kong, 1982. / Also available in print.
58

An embedded control and display system for a laser-based mid-infrared hyperspectral imager /

Ross, Mark. January 2008 (has links)
Thesis (M.Phil.) - University of St Andrews, January 2009.
59

Multi-modal control : from motion description languages to optimal control /

Delmotte, Florent . January 2006 (has links)
Thesis (Ph. D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2007. / Dr. Magnus Egerstedt, Committee Chair ; Dr. Erik Verriest, Committee Member ; Dr. Yorai Wardi, Committee Member ; Dr. Aaron Lanterman, Committee Member ; Dr. Tucker Balch, Committee Member.
60

Studies in autonomous ground vehicle control systems structure and algorithms /

Chen, Qi, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 112-120).

Page generated in 0.0243 seconds