Spelling suggestions: "subject:"[een] DISTANCE TRANSFORM"" "subject:"[enn] DISTANCE TRANSFORM""
11 |
Spatial Characterization of Protein Localization PatternsChitale, Chaitanya S. 27 October 2010 (has links)
No description available.
|
12 |
Binär matchning av bilder med hjälp av vektorer från deneuklidiska avståndstransformen / Binary matching on images using the Euclidean Distance TransformHjelm Andersson, Patrick January 2004 (has links)
<p>This thesis shows the result from investigations of methods that use distance vectors when matching pictures. The distance vectors are available in a distance map made by the Euclidean Distance Transform. The investigated methods use the two characteristic features of the distance vector when matching pictures, length and direction. The length of the vector is used to calculate a value of how good a match is and the direction of the vector is used to predict a transformation to get a better match. The results shows that the number of calculation steps that are used during a search can be reduced compared to matching methods that only uses the distance during the matching.</p>
|
13 |
Binär matchning av bilder med hjälp av vektorer från deneuklidiska avståndstransformen / Binary matching on images using the Euclidean Distance TransformHjelm Andersson, Patrick January 2004 (has links)
This thesis shows the result from investigations of methods that use distance vectors when matching pictures. The distance vectors are available in a distance map made by the Euclidean Distance Transform. The investigated methods use the two characteristic features of the distance vector when matching pictures, length and direction. The length of the vector is used to calculate a value of how good a match is and the direction of the vector is used to predict a transformation to get a better match. The results shows that the number of calculation steps that are used during a search can be reduced compared to matching methods that only uses the distance during the matching.
|
14 |
[en] MULTIRESOLUTION ADAPTIVE MESH EXTRACTION FROM VOLUMES, USING SIMPLIFICATION AND REFINEMENT / [pt] EXTRAÇÃO DE MALHAS ADAPTATIVAS EM MULTI-RESOLUÇÃO A PARTIR DE VOLUMES, USANDO SIMPLIFICAÇÃO E REFINAMENTOADELAILSON PEIXOTO DA SILVA 13 June 2003 (has links)
[pt] Este trabalho apresenta um método para extração de malhas
poligonais adaptativas em multi-resolução, a partir de
objetos volumétricos. As principais aplicações da
extração
de malhas estão ligadas à área médica, dinâmica de
fluidos,
geociências, meteorologia, dentre outras. Nestas áreas os
dados podem ser representados como objetos volumétricos.
Nos dados volumétricos as informações estão representadas
implicitamente, o que dificulta o processamento direto
dos
objetos que se encontram representados dentro do volume.
A
extração da malha visa obter uma representação explícita
dos objetos, de modo a viabilizar o processamento dos
mesmos. O método apresentado na tese procura extrair a
malha a partir de processos de Simplicação e Refinamento.
Durante a simplificação é extraída uma representação
super
amostrada do objeto (na mesma resolução do volume
inicial),
a qual é simplificada de modo a se obter uma malha base
ou
malha grossa, em baixa resolução, porém contendo a
topologia correta do objeto.
A etapa de refinamento utiliza a transformada de distâ
ncia
para obter uma representação da malha em multi-resolução,
ou seja, a cada instante é obtida uma malha de maior
resolução que vai se adaptando progressivamente à
geometria
do objeto. A malha final apresenta uma série de
propriedades
importantes, como boa razão de aspecto dos triângulos,
converge para a superfície do objeto, pode ser aplicada
tanto a objetos com borda quanto a objetos sem borda,
pode
ser aplicada tanto a superfície conexas quanto a não
conexas, dentre outras. / [en] This work presents a method for extracting multiresolution
adaptive polygonal meshes, from volumetric objects. Main
aplications of this work are related to medical area, fluid
dynamics, geosciences, metheorology and others. In these
areas data may be represented as volumetric objects.
Volumetric datasets are implicit representations of
objects, so it s very dificult to apply directly any
process to these objects. Mesh extraction obtains an
explicit representation of the objetc, such that it s
easier to process directly the objects.
The presented method extracts the mesh from two main
processes: Simplification and Refinement. The
simplification step extracts a supersampled representation
of the object (in the same volume resolution), and
simplifies it in such a way to obtain a base mesh (or
coarse mesh), in a low resolution, but containing the
correct topology of the object. Refinement step uses the
distance transform to obtain a multiresolution
representation of the mesh, it means that at each instant
it s obtained an adaptive higher resolution mesh. The final
mesh presents a set of important properties, like good
triangle aspect ratio, convergency to the object surface,
may be applied as to objects with boundary and as to
objects with multiple connected components, among others
properties.
|
15 |
Inspection automatisée d’assemblages mécaniques aéronautiques par vision artificielle : une approche exploitant le modèle CAO / Automated inspection of mechanical parts by computer vision : an approach based on CAD modelViana do Espírito Santo, Ilísio 12 December 2016 (has links)
Les travaux présentés dans ce manuscrit s’inscrivent dans le contexte de l’inspection automatisée d’assemblages mécaniques aéronautiques par vision artificielle. Il s’agit de décider si l’assemblage mécanique a été correctement réalisé (assemblage conforme). Les travaux ont été menés dans le cadre de deux projets industriels. Le projet CAAMVis d’une part, dans lequel le capteur d’inspection est constitué d’une double tête stéréoscopique portée par un robot, le projet Lynx© d’autre part, dans lequel le capteur d’inspection est une caméra Pan/Tilt/Zoom (vision monoculaire). Ces deux projets ont pour point commun la volonté d’exploiter au mieux le modèle CAO de l’assemblage (qui fournit l’état de référence souhaité) dans la tâche d’inspection qui est basée sur l’analyse de l’image ou des images 2D fournies par le capteur. La méthode développée consiste à comparer une image 2D acquise par le capteur (désignée par « image réelle ») avec une image 2D synthétique, générée à partir du modèle CAO. Les images réelles et synthétiques sont segmentées puis décomposées en un ensemble de primitives 2D. Ces primitives sont ensuite appariées, en exploitant des concepts de la théorie de graphes, notamment l’utilisation d’un graphe biparti pour s’assurer du respect de la contrainte d’unicité dans le processus d’appariement. Le résultat de l’appariement permet de statuer sur la conformité ou la non-conformité de l’assemblage. L’approche proposée a été validée à la fois sur des données de simulation et sur des données réelles acquises dans le cadre des projets sus-cités. / The work presented in this manuscript deals with automated inspection of aeronautical mechanical parts using computer vision. The goal is to decide whether a mechanical assembly has been assembled correctly i.e. if it is compliant with the specifications. This work was conducted within two industrial projects. On one hand the CAAMVis project, in which the inspection sensor consists of a dual stereoscopic head (stereovision) carried by a robot, on the other hand the Lynx© project, in which the inspection sensor is a single Pan/Tilt/Zoom camera (monocular vision). These two projects share the common objective of exploiting as much as possible the CAD model of the assembly (which provides the desired reference state) in the inspection task which is based on the analysis of the 2D images provided by the sensor. The proposed method consists in comparing a 2D image acquired by the sensor (referred to as "real image") with a synthetic 2D image generated from the CAD model. The real and synthetic images are segmented and then decomposed into a set of 2D primitives. These primitives are then matched by exploiting concepts from the graph theory, namely the use of a bipartite graph to guarantee the respect of the uniqueness constraint required in such a matching process. The matching result allows to decide whether the assembly has been assembled correctly or not. The proposed approach was validated on both simulation data and real data acquired within the above-mentioned projects.
|
16 |
Métodos de pré-processamento de texturas para otimizar o reconhecimento de padrões / Texture preprocessing methods to optimize pattern recognitionNeiva, Mariane Barros 19 July 2016 (has links)
A textura de uma imagem apresenta informações importantes sobre as características de um objeto. Usar essa informação para reconhecimento de padrões vem sendo uma tarefa bastante pesquisada na área de processamento de imagens e aplicado em atividades como indústria têxtil, biologia, análise de imagens médicas, imagens de satélite, análise de peças industriais, entre outros. Muitos pesquisadores focam em criar mecanismos que convertam a imagem em um vetor de características a fim de utilizar um classificador sobre esse vetores. No entanto, as imagens podem ser transformadas para que que características peculiares sejam evidenciadas fazendo com que extratores de características já existentes explorem melhor as imagens. Esse trabalho tem como objetivo estudar a influência da aplicação de métodos de pré-processamento em imagens de textura para a posterior análise das imagens. Os métodos escolhidos são seis: difusão isotrópica, difusão anisotrópica clássica, dois métodos de regularização da difusão anisotrópica, um método de difusão morfológica e a transformada de distância. Além disso, os métodos foram aliados a sete descritores já conhecidos da literatura para que as características das imagens tranformadas sejam extraídas. Resultados mostram um aumento significativo no desempenho dos classificadores KNN e Naive Bayes quando utilizados nas imagens transformadas de quatro bases de textura: Brodatz, Outex, Usptex e Vistex. / The texture of an image plays an important source of information of the image content. The use of this information to pattern recognition became very popular in image processing area and has applications such in textile industry, biology, medical image analysis, satelite images analysis, industrial equipaments analysis, among others. Many researchers focus on creating different methods to convert the input image to a feature vector to the able to classify the image based on these vectors. However, images can be modified in different ways such that important features are enhanced. Therefore, descriptors are able to extract features easily to perform a better representation of the image. This project aims to apply six different preprocessing methods to analyze their power of enhancement on the texture extraction. The methods are: isotropic diffusion, the classic anisotropic diffusion, two regularizations of the anisotropic diffusion, a morphologic diffusion and the distance transform. To extract the features of these modified images, seven texture analysis algorithms are used along KNN and Naive Bayes to classify the textures. Results show a significant increase when datasets Brodatz, Vistex, Usptex and Outex are transformed prior to texture analysis and classification.
|
17 |
Métodos de pré-processamento de texturas para otimizar o reconhecimento de padrões / Texture preprocessing methods to optimize pattern recognitionMariane Barros Neiva 19 July 2016 (has links)
A textura de uma imagem apresenta informações importantes sobre as características de um objeto. Usar essa informação para reconhecimento de padrões vem sendo uma tarefa bastante pesquisada na área de processamento de imagens e aplicado em atividades como indústria têxtil, biologia, análise de imagens médicas, imagens de satélite, análise de peças industriais, entre outros. Muitos pesquisadores focam em criar mecanismos que convertam a imagem em um vetor de características a fim de utilizar um classificador sobre esse vetores. No entanto, as imagens podem ser transformadas para que que características peculiares sejam evidenciadas fazendo com que extratores de características já existentes explorem melhor as imagens. Esse trabalho tem como objetivo estudar a influência da aplicação de métodos de pré-processamento em imagens de textura para a posterior análise das imagens. Os métodos escolhidos são seis: difusão isotrópica, difusão anisotrópica clássica, dois métodos de regularização da difusão anisotrópica, um método de difusão morfológica e a transformada de distância. Além disso, os métodos foram aliados a sete descritores já conhecidos da literatura para que as características das imagens tranformadas sejam extraídas. Resultados mostram um aumento significativo no desempenho dos classificadores KNN e Naive Bayes quando utilizados nas imagens transformadas de quatro bases de textura: Brodatz, Outex, Usptex e Vistex. / The texture of an image plays an important source of information of the image content. The use of this information to pattern recognition became very popular in image processing area and has applications such in textile industry, biology, medical image analysis, satelite images analysis, industrial equipaments analysis, among others. Many researchers focus on creating different methods to convert the input image to a feature vector to the able to classify the image based on these vectors. However, images can be modified in different ways such that important features are enhanced. Therefore, descriptors are able to extract features easily to perform a better representation of the image. This project aims to apply six different preprocessing methods to analyze their power of enhancement on the texture extraction. The methods are: isotropic diffusion, the classic anisotropic diffusion, two regularizations of the anisotropic diffusion, a morphologic diffusion and the distance transform. To extract the features of these modified images, seven texture analysis algorithms are used along KNN and Naive Bayes to classify the textures. Results show a significant increase when datasets Brodatz, Vistex, Usptex and Outex are transformed prior to texture analysis and classification.
|
Page generated in 0.0418 seconds