Spelling suggestions: "subject:"[een] DOMINATING SET"" "subject:"[enn] DOMINATING SET""
31 |
Clock synchronization and dominating set construction in ad hoc wireless networksZhou, Dong 22 November 2005 (has links)
No description available.
|
32 |
Mobile Ad-hoc Network Routing Protocols: Methodologies and ApplicationsLin, Tao 05 April 2004 (has links)
A mobile ad hoc network (MANET) is a wireless network that uses multi-hop peer-to-peer routing instead of static network infrastructure to provide network connectivity. MANETs have applications in rapidly deployed and dynamic military and civilian systems. The network topology in a MANET usually changes with time. Therefore, there are new challenges for routing protocols in MANETs since traditional routing protocols may not be suitable for MANETs. For example, some assumptions used by these protocols are not valid in MANETs or some protocols cannot efficiently handle topology changes.
Researchers are designing new MANET routing protocols and comparing and improving existing MANET routing protocols before any routing protocols are standardized using simulations. However, the simulation results from different research groups are not consistent with each other. This is because of a lack of consistency in MANET routing protocol models and application environments, including networking and user traffic profiles. Therefore, the simulation scenarios are not equitable for all protocols and conclusions cannot be generalized. Furthermore, it is difficult for one to choose a proper routing protocol for a given MANET application.
According to the aforementioned issues, my Ph.D. research focuses on MANET routing protocols. Specifically, my contributions include the characterization of differ- ent routing protocols using a novel systematic relay node set (RNS) framework, design of a new routing protocol for MANETs, a study of node mobility, including a quantitative study of link lifetime in a MANET and an adaptive interval scheme based on a novel neighbor stability criterion, improvements of a widely-used network simulator and corresponding protocol implementations, design and development of a novel emulation test bed, evaluation of MANET routing protocols through simulations, verification of our routing protocol using emulation, and development of guidelines for one to choose proper MANET routing protocols for particular MANET applications.
Our study shows that reactive protocols do not always have low control overhead, as people tend to think. The control overhead for reactive protocols is more sensitive to the traffic load, in terms of the number of traffic flows, and mobility, in terms of link connectivity change rates, than other protocols. Therefore, reactive protocols may only be suitable for MANETs with small number of traffic loads and small link connectivity change rates. We also demonstrated that it is feasible to maintain full network topology in a MANET with low control overhead. This dissertation summarizes all the aforementioned methodologies and corresponding applications we developed concerning MANET routing protocols. / Ph. D.
|
33 |
Clusterisation et conservation d’énergie dans les réseaux ad hoc hybrides à grande échelleJemili, Imen 13 July 2009 (has links)
Dans le cadre des réseaux ad hoc à grande envergure, le concept de clusterisation peut être mis à profit afin de faire face aux problèmes de passage à l'échelle et d'accroître les performances du système. Tout d’abord, cette thèse présente notre algorithme de clusterisation TBCA ‘Tiered based Clustering algorithm’, ayant pour objectif d’organiser le processus de clusterisation en couches et de réduire au maximum le trafic de contrôle associé à la phase d’établissement et de maintenance de l’infrastructure virtuelle générée. La formation et la maintenance d’une infrastructure virtuelle ne sont pas une fin en soi. Dans cet axe, on a exploité les apports de notre mécanisme de clusterisation conjointement avec le mode veille, à travers la proposition de l’approche de conservation d’énergie baptisée CPPCM ‘Cluster based Prioritized Power Conservation Mechanism’ avec deux variantes. Notre objectif principal est de réduire la consommation d’énergie tout en assurant l’acheminement des paquets de données sans endurer des temps d’attente importants aux niveaux des files d’attente des nœuds impliqués dans le transfert. Nous avons proposé aussi un algorithme de routage LCR ‘Layered Cluster based Routing’ se basant sur l’existence d’une infrastructure virtuelle. L’exploitation des apports de notre mécanisme TBCA et la limitation des tâches de routage additionnelles à un sous ensemble de nœuds sont des atouts pour assurer le passage à l’échelle de notre algorithme. / Relying on a virtual infrastructure seems a promising approach to overcome the scalability problem in large scale ad hoc networks. First, we propose a clustering mechanism, TBCA ‘Tiered based Clustering algorithm’, operating in a layered manner and exploiting the eventual collision to accelerate the clustering process. Our mechanism does not necessitate any type of neighbourhood knowledge, trying to alleviate the network from some control messages exchanged during the clustering and maintenance process. Since the energy consumption is still a critical issue, we combining a clustering technique and the power saving mode in order to conserve energy without affecting network performance. The main contribution of our power saving approach lies on the differentiation among packets based on the amount of network resources they have been so far consumed. Besides, the proposed structure of the beacon interval can be adjusted dynamically and locally by each node according to its own specific requirements. We propose also a routing algorithm, LCR ‘Layered Cluster based Routing’. The basic idea consists on assigning additional tasks to a limited set of dominating nodes, satisfying specific requirements while exploiting the benefits of our clustering algorithm TBCA.
|
34 |
Topology Control, Routing Protocols and Performance Evaluation for Mobile Wireless Ad Hoc NetworksLiu, Hui 12 January 2006 (has links)
A mobile ad-hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without the support of any established infrastructure or centralized administration. There are many potential applications based the techniques of MANETs, such as disaster rescue, personal area networking, wireless conference, military applications, etc. MANETs face a number of challenges for designing a scalable routing protocol due to their natural characteristics. Guaranteeing delivery and the capability to handle dynamic connectivity are the most important issues for routing protocols in MANETs. In this dissertation, we will propose four algorithms that address different aspects of routing problems in MANETs. Firstly, in position based routing protocols to design a scalable location management scheme is inherently difficult. Enhanced Scalable Location management Service (EnSLS) is proposed to improve the scalability of existing location management services, and a mathematical model is proposed to compare the performance of the classical location service, GLS, and our protocol, EnSLS. The analytical model shows that EnSLS has better scalability compared with that of GLS. Secondly, virtual backbone routing can reduce communication overhead and speedup the routing process compared with many existing on-demand routing protocols for routing detection. In many studies, Minimum Connected Dominating Set (MCDS) is used to approximate virtual backbones in a unit-disk graph. However finding a MCDS is an NP-hard problem. In the dissertation, we develop two new pure localized protocols for calculating the CDS. One emphasizes forming a small size initial near-optimal CDS via marking process, and the other uses an iterative synchronized method to avoid illegal simultaneously removal of dominating nodes. Our new protocols largely reduce the number of nodes in CDS compared with existing methods. We show the efficiency of our approach through both theoretical analysis and simulation experiments. Finally, using multiple redundant paths for routing is a promising solution. However, selecting an optimal path set is an NP hard problem. We propose the Genetic Fuzzy Multi-path Routing Protocol (GFMRP), which is a multi-path routing protocol based on fuzzy set theory and evolutionary computing.
|
35 |
Hardness results and approximation algorithms for some problems on graphsAazami, Ashkan January 2008 (has links)
This thesis has two parts. In the first part, we study some graph covering problems with a non-local covering rule that allows a "remote" node to be covered by repeatedly applying the covering rule. In the second part, we provide some results on the packing of Steiner trees.
In the Propagation problem we are given a graph $G$ and the goal is to find a minimum-sized set of nodes $S$ that covers all of the nodes, where a node $v$ is covered if (1) $v$ is in $S$, or (2) $v$ has a neighbor $u$ such that $u$ and all of its neighbors except $v$ are covered. Rule (2) is called the propagation rule, and it is applied iteratively. Throughout, we use $n$ to denote the number of nodes in the input graph. We prove that the path-width parameter is a lower bound for the optimal value. We show that the Propagation problem is NP-hard in planar weighted graphs. We prove that it is NP-hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in weighted (general) graphs.
The second problem that we study is the Power Dominating Set problem. This problem has two covering rules. The first rule is the same as the domination rule as in the Dominating Set problem, and the second rule is the same propagation rule as in the Propagation problem.
We show that it is hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in general graphs. We design and analyze an approximation algorithm with a performance guarantee of $O(\sqrt{n})$ on planar graphs.
We formulate a common generalization of the above two problems called the General Propagation problem. We reformulate this general problem as an orientation problem, and based on this reformulation we design a dynamic programming algorithm. The algorithm runs in linear time when the graph has tree-width $O(1)$. Motivated by applications, we introduce a restricted version of the problem that we call the $\ell$-round General Propagation problem. We give a PTAS for the $\ell$-round General Propagation problem on planar graphs, for small values of $\ell$. Our dynamic programming algorithms and the PTAS can be extended to other problems in networks with similar propagation rules. As an example we discuss the extension of our results to the Target Set Selection problem in the threshold model of the diffusion processes.
In the second part of the thesis, we focus on the Steiner Tree Packing problem. In this problem, we are given a graph $G$ and a subset of terminal nodes $R\subseteq V(G)$. The goal in this problem is to find a maximum cardinality set of disjoint trees that each spans $R$, that is, each of the trees should contain all terminal nodes. In the edge-disjoint version of this problem, the trees have to be edge disjoint. In the element-disjoint version, the trees have to be node disjoint on non-terminal nodes and edge-disjoint on edges adjacent to terminals. We show that both problems are NP-hard when there are only $3$ terminals. Our main focus is on planar instances of these problems. We show that the edge-disjoint version of the problem is NP-hard even in planar graphs with $3$ terminals on the same face of the embedding. Next, we design an algorithm that achieves an approximation guarantee of $\frac{1}{2}-\frac{1}{k}$, given a planar graph that is $k$ element-connected on the terminals; in fact, given such a graph the algorithm returns $k/2-1$ element-disjoint Steiner trees. Using this algorithm we get an approximation algorithm with guarantee of (almost) $4$ for the edge-disjoint version of the problem in planar graphs. We also show that the natural LP relaxation of the edge-disjoint Steiner Tree Packing problem has an integrality ratio
of $2-\epsilon$ in planar graphs.
|
36 |
Hardness results and approximation algorithms for some problems on graphsAazami, Ashkan January 2008 (has links)
This thesis has two parts. In the first part, we study some graph covering problems with a non-local covering rule that allows a "remote" node to be covered by repeatedly applying the covering rule. In the second part, we provide some results on the packing of Steiner trees.
In the Propagation problem we are given a graph $G$ and the goal is to find a minimum-sized set of nodes $S$ that covers all of the nodes, where a node $v$ is covered if (1) $v$ is in $S$, or (2) $v$ has a neighbor $u$ such that $u$ and all of its neighbors except $v$ are covered. Rule (2) is called the propagation rule, and it is applied iteratively. Throughout, we use $n$ to denote the number of nodes in the input graph. We prove that the path-width parameter is a lower bound for the optimal value. We show that the Propagation problem is NP-hard in planar weighted graphs. We prove that it is NP-hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in weighted (general) graphs.
The second problem that we study is the Power Dominating Set problem. This problem has two covering rules. The first rule is the same as the domination rule as in the Dominating Set problem, and the second rule is the same propagation rule as in the Propagation problem.
We show that it is hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in general graphs. We design and analyze an approximation algorithm with a performance guarantee of $O(\sqrt{n})$ on planar graphs.
We formulate a common generalization of the above two problems called the General Propagation problem. We reformulate this general problem as an orientation problem, and based on this reformulation we design a dynamic programming algorithm. The algorithm runs in linear time when the graph has tree-width $O(1)$. Motivated by applications, we introduce a restricted version of the problem that we call the $\ell$-round General Propagation problem. We give a PTAS for the $\ell$-round General Propagation problem on planar graphs, for small values of $\ell$. Our dynamic programming algorithms and the PTAS can be extended to other problems in networks with similar propagation rules. As an example we discuss the extension of our results to the Target Set Selection problem in the threshold model of the diffusion processes.
In the second part of the thesis, we focus on the Steiner Tree Packing problem. In this problem, we are given a graph $G$ and a subset of terminal nodes $R\subseteq V(G)$. The goal in this problem is to find a maximum cardinality set of disjoint trees that each spans $R$, that is, each of the trees should contain all terminal nodes. In the edge-disjoint version of this problem, the trees have to be edge disjoint. In the element-disjoint version, the trees have to be node disjoint on non-terminal nodes and edge-disjoint on edges adjacent to terminals. We show that both problems are NP-hard when there are only $3$ terminals. Our main focus is on planar instances of these problems. We show that the edge-disjoint version of the problem is NP-hard even in planar graphs with $3$ terminals on the same face of the embedding. Next, we design an algorithm that achieves an approximation guarantee of $\frac{1}{2}-\frac{1}{k}$, given a planar graph that is $k$ element-connected on the terminals; in fact, given such a graph the algorithm returns $k/2-1$ element-disjoint Steiner trees. Using this algorithm we get an approximation algorithm with guarantee of (almost) $4$ for the edge-disjoint version of the problem in planar graphs. We also show that the natural LP relaxation of the edge-disjoint Steiner Tree Packing problem has an integrality ratio
of $2-\epsilon$ in planar graphs.
|
37 |
Aspects combinatoires et algorithmiques des codes identifiants dans les graphes / Combinatorial and algorithmic aspects of identifying codes in graphsFoucaud, Florent 10 December 2012 (has links)
Un code identifiant est un ensemble de sommets d'un graphe tel que, d'une part, chaque sommet hors du code a un voisin dans le code (propriété de domination) et, d'autre part, tous les sommets ont un voisinage distinct à l'intérieur du code (propriété de séparation). Dans cette thèse, nous nous intéressons à des aspects combinatoires et algorithmiques relatifs aux codes identifiants.Pour la partie combinatoire, nous étudions tout d'abord des questions extrémales en donnant une caractérisation complète des graphes non-orientés finis ayant comme taille minimum de code identifiant leur ordre moins un. Nous caractérisons également les graphes dirigés finis, les graphes non-orientés infinis et les graphes orientés infinis ayant pour seul code identifiant leur ensemble de sommets. Ces résultats répondent à des questions ouvertes précédemment étudiées dans la littérature.Puis, nous étudions la relation entre la taille minimum d'un code identifiant et le degré maximum d'un graphe, en particulier en donnant divers majorants pour ce paramètre en fonction de l'ordre et du degré maximum. Ces majorants sont obtenus via deux techniques. L'une est basée sur la construction d'ensembles indépendants satisfaisant certaines propriétés, et l'autre utilise la combinaison de deux outils de la méthode probabiliste : le lemme local de Lovasz et une borne de Chernoff. Nous donnons également des constructions de familles de graphes en relation avec ce type de majorants, et nous conjecturons que ces constructions sont optimales à une constante additive près.Nous présentons également de nouveaux minorants et majorants pour la cardinalité minimum d'un code identifiant dans des classes de graphes particulières. Nous étudions les graphes de maille au moins 5 et de degré minimum donné en montrant que la combinaison de ces deux paramètres influe fortement sur la taille minimum d'un code identifiant. Nous appliquons ensuite ces résultats aux graphes réguliers aléatoires. Puis, nous donnons des minorants pour la taille d'un code identifiant des graphes d'intervalles et des graphes d'intervalles unitaires. Enfin, nous donnons divers minorants et majorants pour cette quantité lorsque l'on se restreint aux graphes adjoints. Cette dernière question est abordée via la notion nouvelle de codes arête-identifiants.Pour la partie algorithmique, il est connu que le problème de décision associés à la notion de code identifiant est NP-complet même pour des classes de graphes restreintes. Nous étendons ces résultats à d'autres classes de graphes telles que celles des graphes split, des co-bipartis, des adjoints ou d'intervalles. Pour cela nous proposons des réductions polynomiales depuis divers problèmes algorithmiques classiques. Ces résultats montrent que dans beaucoup de classes de graphes, le problème des codes identifiants est algorithmiquement plus difficile que des problèms liés (tel que le problème des ensembles dominants).Par ailleurs, nous complétons les connaissances relatives à l'approximabilité du problème d'optimisation associé aux codes identifiants. Nous étendons le résultat connu de NP-difficulté pour l'approximation de ce problème avec un facteur sous-logarithmique (en fonction de la taille du graphe instance) aux graphes bipartis, split et co-bipartis, respectivement. Nous étendons également le résultat connu d'APX-complétude pour les graphes de degré maximum donné à une sous-classe des graphes split, aux graphes bipartis de degré maximum 4 et aux graphes adjoints. Enfin, nous montrons l'existence d'un algorithme de type PTAS pour les graphes d'intervalles unitaires. / An identifying code is a set of vertices of a graph such that, on the one hand, each vertex out of the code has a neighbour in the code (domination property), and, on the other hand, all vertices have a distinct neighbourhood within the code (separation property). In this thesis, we investigate combinatorial and algorithmic aspects of identifying codes.For the combinatorial part, we first study extremal questions by giving a complete characterization of all finite undirected graphs having their order minus one as minimum size of an identifying code. We also characterize finite directed graphs, infinite undirected graphs and infinite oriented graphs having their whole vertex set as unique identifying code. These results answer open questions that were previously studied in the literature.We then study the relationship between the minimum size of an identifying code and the maximum degree of a graph. In particular, we give several upper bounds for this parameter as a function of the order and the maximum degree. These bounds are obtained using two techniques. The first one consists in the construction of independent sets satisfying certain properties, and the second one is the combination of two tools from the probabilistic method: the Lovasz local lemma and a Chernoff bound. We also provide constructions of graph families related to this type of upper bounds, and we conjecture that they are optimal up to an additive constant.We also present new lower and upper bounds for the minimum cardinality of an identifying code in specific graph classes. We study graphs of girth at least 5 and of given minimum degree by showing that the combination of these two parameters has a strong influence on the minimum size of an identifying code. We apply these results to random regular graphs. Then, we give lower bounds on the size of a minimum identifying code of interval and unit interval graphs. Finally, we prove several lower and upper bounds for this parameter when considering line graphs. The latter question is tackled using the new notion of an edge-identifying code.For the algorithmic part, it is known that the decision problem associated to the notion of an identifying code is NP-complete, even for restricted graph classes. We extend the known results to other classes such as split graphs, co-bipartite graphs, line graphs or interval graphs. To this end, we propose polynomial-time reductions from several classical hard algorithmic problems. These results show that in many graph classes, the identifying code problem is computationally more difficult than related problems (such as the dominating set problem).Furthermore, we extend the knowledge of the approximability of the optimization problem associated to identifying codes. We extend the known result of NP-hardness of approximating this problem within a sub-logarithmic factor (as a function of the instance graph) to bipartite, split and co-bipartite graphs, respectively. We also extendthe known result of its APX-hardness for graphs of given maximum degree to a subclass of split graphs, bipartite graphs of maximum degree 4 and line graphs. Finally, we show the existence of a PTAS algorithm for unit interval graphs.
|
38 |
Generic Architecture for Power-Aware Routing in Wireless Sensor NetworksRanjan, Rishi 18 June 2004 (has links)
This work describes the design and implementation of a generic architecture to provide a collective solution for power-aware routing to a wide range of problems in wireless sensor network environments. Power aware-routing is integral to the proposed solutions for different problems. These solutions try to achieve power-efficient routing specific to the problem domain. This can lead to challenging technical problems and deployment barriers when attempting to integrate the solutions. This work extracts various factors to be considered for a range of problems in wireless sensor networks and provides a generic framework for efficient power-aware routing. The architecture aims to relieve researchers from considering power management in their design. We have identified coupling between sources and sinks as the main factor for different design choices for a range of problems. We developed a core-based hierarchical routing framework for efficient power-aware routing that is used to decouple the sources from sinks. The architecture uses only local interaction for scalability and stability in a dynamic network. The architecture provides core-based query forwarding and data dissemination. It uses data aggregation and query aggregation at core nodes to reduce the amount of data to be transmitted. The architecture can be easily extended to incorporate protocols to provide QoS and security to the applications. We use network simulations to evaluate the performance of cluster formation and energy efficiency of the algorithm. Our results show that energy efficiency of the algorithm is better when the transmission range is kept to a minimum for network connectivity as compared to adjustable transmission range.
|
39 |
[en] MATHEURISTICS FOR VARIANTS OF THE DOMINATING SET PROBLEM / [pt] MATEURÍSTICAS PARA VARIANTES DO PROBLEMA DO CONJUNTO DOMINANTEMAYRA CARVALHO ALBUQUERQUE 14 June 2018 (has links)
[pt] Esta tese faz um estudo do problema do Conjunto Dominante, um problema NP-difícil de grande relevância em aplicações relacionadas ao projeto de rede sem fio, mineração de dados, teoria de códigos, dentre outras. O conjunto dominante mínimo em um grafo é um conjunto mínimo de vértices de modo que cada vértice do grafo pertence a este conjunto ou é adjacente a um vértice que pertence a ele. Três variantes do problema foram estudadas; primeiro, uma variante na qual considera pesos nos vértices, buscando um conjunto dominante com menor peso total; segundo, uma variante onde o subgrafo induzido pelo conjunto dominante está conectado; e, finalmente, a variante que engloba essas duas características. Para resolver esses três problemas, propõe-se um algoritmo híbrido baseado na meta-heurística busca tabu com componentes adicionais de programação matemática, resultando em um método por vezes chamado de mateurística, (matheuristic, em inglês). Diversas técnicas adicionais e vizinhanças largas foram propostas
afim de alcançar regiões promissoras no espaço de busca. Análises experimentais demonstram a contribuição individual de todos esses componentes. Finalmente, o algoritmo é testado no problema do código de cobertura mínima, que pode ser visto como um caso especial do problema do conjunto dominante. Os códigos são estudados na métrica Hamming e na métrica Rosenbloom-Tsfasman. Neste último, diversos códigos menores foram encontrados. / [en] This thesis addresses the Dominating Set Problem, an NP- hard problem with great relevance in applications related to wireless network design, data mining, coding theory, among others. The minimum dominating set in a graph is a minimal set of vertices so that each vertex of the graph belongs to it or is adjacent to a vertex of this set. We study three variants of the problem: first, in the presence of weights on vertices, searching for a dominating set with smallest total weight; second, a variant where the subgraph induced by the dominating set needs to be connected, and,finally, the variant that encompasses these two characteristics. To solve these three problems, we propose a hybrid algorithm based on tabu search with additional mathematical-programming components, leading to a method sometimes called matheuristic. Several additional techniques and large neighborhoods are also employed to reach promising regions in the search space. Our experimental analyses show the good contribution of all these individual components. Finally, the algorithm is tested on the covering code problem, which can be viewed as a special case of the minimum dominating set problem. The codes are studied for the Hamming metric and the Rosenbloom-Tsfasman metric. For this last case, several shorter codes were found.
|
40 |
Connecting hitting sets and hitting paths in graphsCamby, Eglantine 30 June 2015 (has links)
Dans cette thèse, nous étudions les aspects structurels et algorithmiques de différents problèmes de théorie des graphes. Rappelons qu’un graphe est un ensemble de sommets éventuellement reliés par des arêtes. Deux sommets sont adjacents s’ils sont reliés par une arête.<p>Tout d’abord, nous considérons les deux problèmes suivants :le problème de vertex cover et celui de dominating set, deux cas particuliers du problème de hitting set. Un vertex cover est un ensemble de sommets qui rencontrent toutes les arêtes alors qu’un dominating set est un ensemble X de sommets tel que chaque sommet n’appartenant pas à X est adjacent à un sommet de X. La version connexe de ces problèmes demande que les sommets choisis forment un sous-graphe connexe. Pour les deux problèmes précédents, nous examinons le prix de la connexité, défini comme étant le rapport entre la taille minimum d’un ensemble répondant à la version connexe du problème et celle d’un ensemble du problème originel. Nous prouvons la difficulté du calcul du prix de la connexité d’un graphe. Cependant, lorsqu’on exige que le prix de la connexité d’un graphe ainsi que de tous ses sous-graphes induits soit borné par une constante fixée, la situation change complètement. En effet, pour les problèmes de vertex cover et de dominating set, nous avons pu caractériser ces classes de graphes pour de petites constantes.<p>Ensuite, nous caractérisons en termes de dominating sets connexes les graphes Pk- free, graphes n’ayant pas de sous-graphes induits isomorphes à un chemin sur k sommets. Beaucoup de problèmes sur les graphes sont étudiés lorsqu’ils sont restreints à cette classe de graphes. De plus, nous appliquons cette caractérisation à la 2-coloration dans les hypergraphes. Pour certains hypergraphes, nous prouvons que ce problème peut être résolu en temps polynomial.<p>Finalement, nous travaillons sur le problème de Pk-hitting set. Un Pk-hitting set est un ensemble de sommets qui rencontrent tous les chemins sur k sommets. Nous développons un algorithme d’approximation avec un facteur de performance de 3. Notre algorithme, basé sur la méthode primal-dual, fournit un Pk-hitting set dont la taille est au plus 3 fois la taille minimum d’un Pk-hitting set. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0302 seconds