• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 240
  • 182
  • 84
  • 40
  • 11
  • 8
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 650
  • 135
  • 93
  • 78
  • 76
  • 75
  • 74
  • 69
  • 68
  • 65
  • 59
  • 50
  • 49
  • 48
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

An extremal problem related to analytic continuation

Makhmudov, Olimdjan, Tarkhanov, Nikolai January 2013 (has links)
We show that the usual variational formulation of the problem of analytic continuation from an arc on the boundary of a plane domain does not lead to a relaxation of this overdetermined problem. To attain such a relaxation, we bound the domain of the functional, thus changing the Euler equations.
102

Body Motion Capture Using Multiple Inertial Sensors

2012 January 1900 (has links)
Near-fall detection is important for medical research since it can help doctors diagnose fall-related diseases and also help alert both doctors and patients of possible falls. However, in people’s daily life, there are lots of similarities between near-falls and other Activities of Daily Living (ADLs), which makes near-falls particularly difficult to detect. In order to find the subtle difference between ADLs and near-fall and accurately identify the latter, the movement of whole human body needs to be captured and displayed by a computer generated avatar. In this thesis, a wireless inertial motion capture system consisting of a central control host and ten sensor nodes is used to capture human body movements. Each of the ten sensor nodes in the system has a tri-axis accelerometer and a tri-axis gyroscope. They are attached to separate locations of a human body to record both angular and acceleration data with which body movements can be captured by applying Euler angle based algorithms, specifically, single rotation order algorithm and the optimal rotation order algorithm. According to the experiment results of capturing ten ADLs, both the single rotation order algorithm and the optimal rotation order algorithm can track normal human body movements without significantly distortion and the latter shows higher accuracy and lower data shifting. Compared to previous inertial systems with magnetometers, this system reduces hardware complexity and software computation while ensures a reasonable accuracy in capturing human body movements.
103

The discontinuous Galerkin method on Cartesian grids with embedded geometries: spectrum analysis and implementation for Euler equations

Qin, Ruibin 11 September 2012 (has links)
In this thesis, we analyze theoretical properties of the discontinuous Galerkin method (DGM) and propose novel approaches to implementation with the aim to increase its efficiency. First, we derive explicit expressions for the eigenvalues (spectrum) of the discontinuous Galerkin spatial discretization applied to the linear advection equation. We show that the eigenvalues are related to the subdiagonal [p/p+1] Pade approximation of exp(-z) when the p-th degree basis functions are used. Then, we extend the analysis to nonuniform meshes where both the size of elements and the composition of the mesh influence the spectrum. We show that the spectrum depends on the ratio of the size of the largest to the smallest cell as well as the number of cells of different types. We find that the spectrum grows linearly as a function of the proportion of small cells present in the mesh when the size of small cells is greater than some critical value. When the smallest cells are smaller than this critical value, the corresponding eigenvalues lie outside of the main spectral curve. Numerical examples on nonuniform meshes are presented to show the improvement on the time step restriction. In particular, this result can be used to improve the time step restriction on Cartesian grids. Finally, we present a discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries. Cutting an embedded geometry out of the Cartesian grid creates cut cells, which are difficult to deal with for two reasons. One is the restrictive CFL number and the other is the integration on irregularly shaped cells. We use explicit time integration employing cell merging to avoid restrictively small time steps. We provide an algorithm for splitting complex cells into triangles and use standard quadrature rules on these for numerical integration. To avoid the loss of accuracy due to straight sided grids, we employ the curvature boundary conditions. We show that the proposed method is robust and high-order accurate.
104

Flow and Pressure Drop of Highly Viscous Fluids in Small Aperture Orifices

Bohra, Lalit Kumar 09 July 2004 (has links)
A study of the pressure drop characteristics of the flow of highly viscous fluids through small diameter orifices was conducted to obtain a better understanding of hydraulic fluid flow loops in vehicles. Pressure drops were measured for each of nine orifices, including orifices of nominal diameter 0.5, 1 and 3 mm, and three thicknesses (nominally 1, 2 and 3 mm), and over a wide range of flow rates (2.86x10sup-7/sup Q 3.33x10sup-4/sup msup3/sup/s). The fluid under consideration exhibits steep dependence of the properties (changes of several orders of magnitude) as a function of temperature and pressure, and is also non-Newtonian at the lower temperatures. The data were non-dimensionalized to obtain Euler numbers and Reynolds numbers using non-Newtonian treatment. It was found that at small values of Reynolds numbers, an increase in aspect ratio (length/diameter ratio of the orifice) causes an increase in Euler number. It was also found that at extremely low Reynolds numbers, the Euler number was very strongly influenced by the Reynolds number, while the dependence becomes weaker as the Reynolds number increases toward the turbulent regime, and the Euler number tends to assume a constant value determined by the aspect ratio and the diameter ratio. A two-region (based on Reynolds number) model was developed to predict Euler number as a function of diameter ratio, aspect ratio, viscosity ratio and generalized Reynolds number. This model also includes data at higher temperatures (20 and le; T and le; 50supo/supC) obtained by Mincks (2002). It was shown that for such highly viscous fluids with non-Newtonian behavior at some conditions, accounting for the shear rate through the generalized Reynolds number resulted in a considerable improvement in the predictive capabilities of the model. Over the laminar, transition and turbulent regions, the model predicts 86% of the data within and plusmn25% for 0.32 l/d (orifice thickness/diameter ratio) 5.72, 0.023 and beta; (orifice/pipe diameter ratio) 0.137, 0.09 Resubge/sub 9677, and 0.0194 and mu;subge/sub 9.589 (kg/m-s)
105

Nodal sets and contact structures

Komendarczyk, Rafal 22 June 2006 (has links)
In this thesis the author develops techniques to study contact structures via Riemannian geometry. The main observation is a relation between characteristic surfaces of contact structures and zero sets of solutions to certain subelliptic PDEs. This relation makes it possible to derive, under a symmetry assumption, necessary and sufficient conditions for tightness of contact structures arising from a certain class of invariant curl eigenfields. Further, it has implications in the energy relaxation of this special class of fluid flows. Specifically, the author shows existence of an energy minimizing curl eigenfield which is orthogonal to an overtwisted contact structure. It provides a counterexample to the conjecture of Etnyre and Ghrist posed in their work on hydrodynamics of contact structures.
106

Euler-Bernoulli Implementation of Spherical Anemometers for High Wind Speed Calculations via Strain Gauges

Castillo, Davis 2011 May 1900 (has links)
New measuring methods continue to be developed in the field of wind anemometry for various environments subject to low-speed and high-speed flows, turbulent-present flows, and ideal and non-ideal flows. As a result, anemometry has taken different avenues for these environments from the traditional cup model to sonar, hot-wire, and recent developments with sphere anemometers. Several measurement methods have modeled the air drag force as a quadratic function of the corresponding wind speed. Furthermore, by incorporating non-drag fluid forces in addition to the main drag force, a dynamic set of equations of motion for the deflection and strain of a spherical anemometer's beam can be derived. By utilizing the equations of motion to develop a direct relationship to a measurable parameter, such as strain, an approximation for wind speed based on a measurement is available. These ODE's for the strain model can then be used to relate directly the fluid speed (wind) to the strain along the beam’s length. The spherical anemometer introduced by the German researcher Holling presents the opportunity to incorporate the theoretical cantilevered Euler-Bernoulli beam with a spherical mass tip to develop a deflection and wind relationship driven by cross-area of the spherical mass and constriction of the shaft or the beam's bending properties. The application of Hamilton's principle and separation of variables to the Lagrangian Mechanics of an Euler-Bernoulli beam results in the equations of motion for the deflection of the beam as a second order partial differential equation (PDE). The boundary conditions of our beam's motion are influenced by the applied fluid forces of a relative drag force and the added mass and buoyancy of the sphere. Strain gauges will provide measurements in a practical but non-intrusive method and thus the concept of a measuring strain gauge is simulated. Young's Modulus creates a relationship between deflection and strain of an Euler-Bernoulli system and thus a strain and wind relation can be modeled as an ODE. This theoretical sphere anemometer's second order ODE allows for analysis of the linear and non-linear accuracies of the motion of this dynamic system at conventional high speed conditions.
107

An assessment of least squares finite element models with applications to problems in heat transfer and solid mechanics

Pratt, Brittan Sheldon 10 October 2008 (has links)
Research is performed to assess the viability of applying the least squares model to one-dimensional heat transfer and Euler-Bernoulli Beam Theory problems. Least squares models were developed for both the full and mixed forms of the governing one-dimensional heat transfer equation along weak form Galerkin models. Both least squares and weak form Galerkin models were developed for the first order and second order versions of the Euler-Bernoulli beams. Several numerical examples were presented for the heat transfer and Euler- Bernoulli beam theory. The examples for heat transfer included: a differential equation having the same form as the governing equation, heat transfer in a fin, heat transfer in a bar and axisymmetric heat transfer in a long cylinder. These problems were solved using both least squares models, and the full form weak form Galerkin model. With all four examples the weak form Galerkin model and the full form least squares model produced accurate results for the primary variables. To obtain accurate results with the mixed form least squares model it is necessary to use at least a quadratic polynominal. The least squares models with the appropriate approximation functions yielde more accurate results for the secondary variables than the weak form Galerkin. The examples presented for the beam problem include: a cantilever beam with linearly varying distributed load along the beam and a point load at the end, a simply supported beam with a point load in the middle, and a beam fixed on both ends with a distributed load varying cubically. The first two examples were solved using the least squares model based on the second order equation and a weak form Galerkin model based on the full form of the equation. The third problem was solved with the least squares model based on the second order equation. Both the least squares model and the Galerkin model calculated accurate results for the primary variables, while the least squares model was more accurate on the secondary variables. In general, the least-squares finite element models yield more acurate results for gradients of the solution than the traditional weak form Galkerkin finite element models. Extension of the present assessment to multi-dimensional problems and nonlinear provelms is awaiting attention.
108

Haptic Servo System

MOULKI, Mohammad Firas, Khashab, Mohamad January 2015 (has links)
A ”Haptic servo system” is here understood as a servo system whereforces from a controlled system are fed back to an operator. This thesis workis a design work where the work among other things comprises the choice ofsuitable motors, one for operating the beam and another one for operatingthe steering wheel. Data for the beam and ball are assumed to be known.Data for the feed back torque to the steering wheel is assumed to be specifiedin advance. Two models to represent the human response are suggested. Asimulation study is carried out to show that the system works according tosome specification. The ball and beam process is simulated with hardwarein the loop. The hardware in the loop is a Maxon motor. The motor is usedas the steering wheel and the motor will also propagate the torque feedbackto the operator.The task of the thesis work could then be formulated as: Can a human, withtorque feedback, manually control the ball on the beam without looking atthe ball and the beam?
109

Incompressible Boussinesq equations and spaces of borderline Besov type

Glenn-Levin, Jacob Benjamin 12 July 2012 (has links)
The Boussinesq approximation is a set of fluids equations utilized in the atmospheric and oceanographic sciences. They may be thought of as inhomogeneous, incompressible Euler or Navier-Stokes equations, where the inhomogeneous term is a scalar quantity, typically representing density or temperature, governed by a convection-diffusion equation. In this thesis, we prove local-in-time existence and uniqueness of an inviscid Boussinesq system. Furthermore, we show that under stronger assumptions, the local-in-time results can be extended to global-in-time existence and uniqueness as well. We assume the density equation contains nonzero diffusion and that our initial vorticity and density belong to a space of borderline Besov-type. We use paradifferential calculus and properties of the Besov-type spaces to control the growth of vorticity via an a priori estimate on the growth of density. This result is motivated by work of M. Vishik demonstrating local-in-time existence and uniqueness for 2D Euler equations in borderline Besov-type spaces, and by work of R. Danchin and M. Paicu showing the global well-posedness of the 2D Boussinesq system with initial data in critical Besov and Lp-spaces. / text
110

Minimization problems involving polyconvex integrands

Awi, Romeo Olivier 21 September 2015 (has links)
This thesis is mainly concerned with problems in the areas of the Calculus of Variations and Partial Differential Equations (PDEs). The properties of the functional to minimize with respect to the given topology play an important role in the existence of minimizers of integral problems. We will introduce the important concepts of quasiconvexity and polyconvexity. Inspired by finite element methods from Numerical Analysis, we introduce a perturbed problem which has some surprising uniqueness properties.

Page generated in 0.0502 seconds