• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Validation of Point and Pressure Loading Models for Simply Supported Composite Sandwich Beams

Wright, Bryan K. 27 November 2012 (has links)
Stiffness and strength models are derived for simply supported composite sandwich panels comprised of fibre-reinforced face sheets and polymer cores subject to symmetric four point bending and uniformly distributed loading. Optimal trajectories for minimum mass design are calculated using the models and situated on failure mechanism maps. A stiffness constraint is also derived to omit beam designs of excessive compliance. Analytical models were validated through an extensive series of experiments, considering beams comprised of GFRP face sheets with ROHACELL 51-IG and extruded polystyrene (EPS) polymer cores. An alternate loading fixture was used to simulate uniform pressure loads. In general, experiments were able to validate most analytical expressions for a range of experimental conditions. Though the predictions worked well with most beam cases, analytical models were noted to become unreliable for short or slender beams.
12

An investigation of combined failure mechanisms in large scale open pit slopes

Franz, Juergen, Mining Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Failure mechanisms in large scale open pit slopes are more complex than could be considered through conventional slope design methods. Pit slope behaviour must be predicted accurately, because for very deep open pits, a small change of slope angle can have serious technical and economic consequences. Failure of hard rock slopes often involves both failure along naturally existing weakness planes and failure of intact rock. Without an advanced understanding of combined rock slope failure mechanisms, the validity of commonly applied methods of large scale slope analysis is questionable. The problem was investigated by means of a toolbox approach, in which a wide range of slope stability analysis methods were used and compared to address specific problems arising during slope design optimisation of the Cadia Hill Open Pit, NSW. In particular, numerical modelling is an advanced tool to obtain insight into potential failure mechanisms and to assist the slope design process. The distinct element method was employed to simulate complex rock slope failure, including fracture extension, progressive step-path failure and brittle failure propagation, which were previously often considered unimportant or too difficult to model. A new, failure-scale-dependent concept for the categorisation of slope failures with six categories ranging from 0 (stable) to 5 (overall slope failure) was suggested to assist risk-based slope design. Parametric slope modelling was conducted to determine the interrelationship between proposed categories and critical slope/discontinuity parameters. Initiation and progression of complex slope failure were simulated and described, which resulted in an advanced understanding of combined slope failure mechanisms and the important role of rock bridges in large scale slope stability. A graphical presentation of the suggested slope failure categories demonstrated their interrelationship to varied slope/discontinuity parameters. Although large scale slope analyses will always involve data-limited systems, this investigation shows that comprehensive, conceptual modelling of slope failure mechanisms can deliver a significantly improved insight into slope behaviour, so that associated slope failure risks can be judged with more confidence. The consideration of combined slope failure mechanisms in the analysis of large scale open pit slopes is essential if slope behaviour is to be realistically modelled.
13

Méthodologie multi-échelle pour évaluer la vulnérabilité des structures en maçonnerie / Multiscale methodology for vulnerability assessment of masonry structures

Tabbakhha, Maryam 14 May 2013 (has links)
L’objectif principal de cette étude est de développer des outils de simulation numérique pour évaluer la vulnérabilité des constructions en maçonnerie sous chargements variés. Ainsi, le comportement de la maçonnerie non armée sous chargement monotone en macro- et micro-échelles est étudié. La simulation du comportement non linéaire du mur de maçonnerie avant et après le pic et la capture de son mécanisme de rupture sont les points centraux de ce travail. Tout d'abord, le mur de maçonnerie d’un panneau est remplacé par deux barres simples utilisant la stratégie des macros-éléments et un comportement tri-linéaire est proposé pour évaluer la résistance à la rupture de la paroi ainsi que son comportement avant et après le pic. L'absence de l'information sur le mécanisme de rupture du mur de maçonnerie et la relation entre le mécanisme de rupture et les propriétés mécaniques des éléments barres dans ce type de modélisation conduisent à opter pour une autre description de ces structures à savoir la stratégie de micro-modélisation. Dans cette stratégie, les unités et les mortiers sont modélisés séparément et l’ensemble du comportement inélastique du mur de maçonnerie est supposé se produire dans les mortiers. Par conséquent, une attention particulière sera accordée au développement d'une description fiable des propriétés matérielles de ces éléments à l'aide d'une loi constitutive précise. La représentation tridimensionnelle d'un mur de maçonnerie faite dans ce travail, améliore la capacité des méthodes actuelles pour prédire le comportement de la maçonnerie sous les deux chargements en plan et hors du plan. D’abord, des enveloppes de rupture comprenant la tension limite et la surface de charge de Mohr-Coulomb sont assignées à l'élément d'interface du code éléments finis GEFDyn. Ensuite, la loi de comportement est améliorée en ajoutant un seuil de compression aux surfaces de charge pour inclure l’endommagement en compression de la maçonnerie à travers l'élément d'interface. Dans le nouveau modèle élastoplastique, les écrouissages négatifs des seuils de traction et de compression ainsi que la cohésion du mortier sont pris en considération. La capacité des deux modèles pour reproduire le comportement avant et après le pic de la résistance au cisaillement du mur de maçonnerie est vérifiée en comparant les résultats numériques avec les données expérimentales. L'importance de l’interaction entre les seuils de compression et celui du cisaillement est montrée en comparant les résultats obtenus avec ceux d'un test réel. Les résultats ont révélé que le second modèle est capable de simuler le comportement du mur de maçonnerie avec une bonne précision. Ensuite, l'effet des propriétés géométriques de la paroi telles que l’existence d’une ouverture et l'élancement, les propriétés des mortiers comme la cohésion, la résistance en traction et la résistance en compression ainsi que la contrainte verticale initiale dans le mur, sur la résistance latérale et le mécanisme de rupture des murs de maçonnerie est démontré. En outre, afin de présenter l’état d’endommagement, des indices de dommage, portant sur la longueur totale des fissures dans différentes rangées et colonnes de mortiers sont introduits et comparés pour différentes configurations. Les longueurs de glissement et d’ouverture de fissures dans les mortiers horizontale et verticale respectivement, sont les paramètres les plus importants qui contrôlent le comportement du mur. Enfin, la relation entre les profils de fissuration différents et les propriétés des matériaux y contribuant sont résumées dans un tableau. / The aim of this thesis is to develop numerical models for evaluating the vulnerability of unreinforced masonry construction under different types of loading. Therefore, the behavior of unreinforced masonry panels under monotonic loading in both macro- and micro- scales is studied. Simulating the nonlinear behavior of the masonry wall in pre and post-peak regions and capturing its failure mechanism is the main focus of this study. First, the masonry wall in the panel is substituted by two simple bars using the so-called macro-element strategy and a tri-linear behavior is proposed to assess the ultimate strength of the wall as well as its response before and after peak. The lack of information about the failure mechanism of the masonry wall and relation between the failure mechanism and mechanical properties of the bar elements in this type of modeling lead to another description of this structure namely micro-modeling strategy. In this strategy, units and mortars are modeled separately and all inelastic behavior of the masonry wall is supposed to happen in mortars. Hence, special attention is paid to development of a reliable description of material properties for these elements using an accurate constitutive law. Three dimensional representation of a masonry wall in this work enhances the capability of existing methods to predict the masonry behavior under both in-plane and out-of-plane loadings. Firstly, failure envelopes including tension cut-off and the Mohr-Coulomb yield surface are assigned to interface elements in GEFDyn finite element software. Then, the elstoplastic constitutive law is improved by adding a compression cap to the yield surfaces in order to include compressive failure of masonry in the interface element. In the new model, softening behavior for tensile and compressive strength as well as cohesion of mortar is considered. The ability of both models to reproduce the pre- and post-peak behavior of the masonry wall is verified by comparing the numerical results with experimental data. The importance of defining the compression failure of masonry by limiting the shear strength of the wall with its compressive strength is shown by comparing the obtained results with those of a real test. The results showed that the second model is capable to simulate the behavior of masonry wall with a good accuracy. Then, the effect of initial stresses and geometrical properties of the wall such as opening and aspect ratio and material properties of the mortar like its cohesion, tensile strength and compressive strength, on lateral strength and failure mechanism of the masonry walls are demonstrated. Moreover, in order to comprehend failure characteristics damage indexes based on the total length of cracks in different rows and columns of mortars are introduced and compared for different configurations. The lengths of sliding in horizontal mortars and opening in vertical ones are the most important parameters that control the behavior of the wall. Finally, the relation between different cracking profiles and contributing material properties are summarized into a table.
14

Effects of marine environment exposure on the static and fatigue mechanical properties of carbon fibre-epoxy composite

Meng, Maozhou January 2016 (has links)
This thesis studies the static and fatigue failure of carbon fibre-epoxy composite for marine use. The primary objective is to investigate the effects of sea water ingress on the static and cyclic performance of laminated composites, by using the combination of experimental, numerical and analytical approaches. Experiments were carried out to collect evidence, including data and images, for further analysis. Samples were made from autoclave-cured carbon fibre-epoxy pre-preg for the static, moisture diffusion and fatigue tests. Three chambers were used in the diffusion test, containing fresh water (tap water), sea water and sea water at 70 bar hydrostatic pressure respectively. And the chambers were placed in an oven at a constant temperature 50 °C in order to accelerate the water absorption. Optical and scanning electron microscopies (SEM) were employed to inspect for manufacturing defects and to identify the failure modes. Some formulae were derived to predict the material properties of laminated composites, to validate the mechanical tests, and to explain the failure criteria of composites. Finite element analysis (FEA) was employed to study the phenomena that were observed in the experiments. FEA has the aim to simulate the static, diffusion and fatigue behaviour involving multiphysics and multiscale effects. The FEA modelling has revealed details of the stress and moisture distributions, which have helped to understand the failure mechanisms of laminated composites. Classical laminate theory (CLT) was employed to develop an analytical model. The basic principles of CLT were extended to three-dimensions, and the analytical solution was critically compared with the FEA results. Some MATLAB tools based on CLT were developed to predict the properties of laminated composites and to analyse the experimental data. These MATLAB codes are shown in the appendix. This thesis has contributed to an improved knowledge of the failure mechanisms of composite materials in both normal and marine environments, and to optimize structural design of FRP composites.
15

Power cycling capability of advanced packaging and interconnection technologies at high temperature swings

Amro, Raed 21 July 2006 (has links)
This work is a contribution to the evaluation of the power cycling reliability of different packaging and interconnection solutions at high temperature swings. It provides the designer of power circuits data for module lifetime prediction especially at high operational temperatures. Failure analysis with the different microscopic techniques provide cognitions about the failure mechanisms and eventual weak points of the power devices at high thermal stresses. / Diese Arbeit liefert einen Beitrag zur Qualifizierung der Lastwechselfestigkeit von modernen Aufbau- und Verbindungstechniken bei hohen Temperaturhüben. Dadurch wird den Designern von Leistungsschaltkreisen Daten zur Abschätzung der Lebensdauer ihrer Komponente besonders unter höheren Umgebungstemperaturen zur Verfügung gestellt. Eine Ausfallanalyse mit dem Rasterelektronenmikroskop (REM) und der Ultraschallmikroskopie liefert Erkenntnisse über die zu erwartende Ausfallmechanismen und die eventuellen Schwachpunkte der Bauelemente bei hohen Temperaturen
16

Mesoscale Physics of Electrified Interfaces with Metal Electrodes

Bairav Sabarish Vishnugopi (15302419) 17 April 2023 (has links)
<p>Li-ion batteries (LIBs) are currently pervasive across portable electronics and electric vehicles and are on the ascent for large-scale applications such as grid storage. However, commercial LIBs based on intercalation chemistries are inching toward their theoretical energy density limits. Consequently, the rapidly growing demands of energy storage have necessitated a recent renaissance in exploring battery systems beyond Li-ion chemistry. Next-generation batteries that utilize Li metal as the anode can improve the energy density and power density of LIBs. Despite the theoretical promise, the commercialization of metal-based batteries requires overcoming several hurdles, stemming from the unstable nature of Li in liquid electrolytes. Upon repeated charging, the metal anode undergoes unrestricted growth of dendrites, devolving to a thermal runaway in extreme circumstances. By replacing the organic liquid electrolyte with a non-flammable solid electrolyte, solid-state batteries (SSBs) can potentially provide enhanced safety attributes over liquid electrolyte cells. Upon pairing of solid electrolytes with a Li metal anode, such systems present the unique possibility of engineering batteries with high energy density and fast charging rates. However, there are a number of technical challenges and fundamental scientific advances necessary for SSBs to achieve reliable electrochemical performance. The formation of dendritic morphologies during charging and the loss of active area at the anode-electrolyte interface during discharging are two critical limitations that need to be addressed.</p> <p>In this thesis, the morphological stability of the Li metal anode is examined based on the mechanistic interaction of electrochemical reaction, ionic transport and surface self-diffusion, that is further dependent on aspects including the thermal field and electrolyte composition. The origin of electrochemical-mechanical instability and metal penetration due to heterogeneities in solid-state electrolytes such as grain boundaries will be analyzed. The phenomenon of contact loss at solid-solid interfaces due to the competing interaction between electrochemical dissolution and Li mechanics will be studied. Lastly, the mechanistic attributes governing the thermal stability of solid-solid interfaces in solid-state batteries will be examined. Overall, the dissertation will focus on understanding the fundamental mechanisms underlying the evolution of solid-liquid and solid-solid interfaces in energy storage and derive potential design guidelines toward achieving stable morphologies in metal-based batteries.</p>
17

Investigation of The Failure Mechanism and Moment Capacity Prediction in a Ten Bolt Flush End Plate Moment Connection

Arthur, Godwin Addiah 19 August 2010 (has links)
No description available.
18

Modeling Oxidation-Induced Degradation and Environment-Induced Damage of Thermal Barrier Coatings

Zhang, Bochun 20 July 2022 (has links)
Thermal Barrier Coating systems (TBCs) serve as a key component in gas turbines in aerospace engines, isolating the metallic substrate from severe heat flux of the environment. The durability of TBCs has been considered to be a critical issue to determine the service lifespan of hot section components. Comprehensive studies of failure mechanisms benefit the gas turbine industry to develop TBCs with better material properties and stable microstructures, thus potentially enhancing their durability. To date, many failure mechanism analyses have been conducted based on the understanding of critical residual stress developed under different thermal tests. For the present study, using the Finite Element (FE) method with temperature-process-dependent model parameters, the maximum residual stress is calculated with evolution of the localized/global interfacial roughness profile based on Electron Beam-Physical Vapour Deposition Thermal Barrier Coating system (EB-PVD TBCs). With studies of cracking routes from past research, qualitative failure mechanism analysis is conducted for EB-PVD TBCs. In addition, the estimated energy release rates are compared to reveal the effect of different thermal profiles on the crack driving forces for Atmospheric Plasma Sprayed Thermal Barrier Coating systems (APS-TBCs). Using previously observed cracking routes from different thermal cycling experiments, a quantitative failure mechanism analysis is conducted for APS-TBCs with modified analytical expressions. In addition, literature works revealed that physics and mechanics-based models were proposed to evaluate environment induced damage. For the last part of my research, erosion of EB-PVD TBCs is estimated using a modified solid particle erosion model. A stochastic approach is applied to study the erosion of EB-PVD topcoat (TC) under real engine service conditions. The durability of TBCs is affected by both oxidation-induced degradation and environment-induced damage. The combination of “internal” crack driving forces (generated from residual stresses developed upon different stages of thermal cycles) and “external” erosion damage (from temperature-process dependent brittle/ductile erosion) lead to complexity of evaluating durability under different service conditions.
19

Development And Design Optimization Of Laminated Composite Structures Using Failure Mechanism Based Failure Criterion

Naik, G Narayana 12 1900 (has links)
In recent years, use of composites is increasing in most fields of engineering such as aerospace, automotive, civil construction, marine, prosthetics, etc., because of its light weight, very high specific strength and stiffness, corrosion resistance, high thermal resistance etc. It can be seen that the specific strength of fibers are many orders more compared to metals. Thus, laminated fiber reinforced plastics have emerged to be attractive materials for many engineering applications. Though the uses of composites are enormous, there is always an element of fuzziness in the design of composites. Composite structures are required to be designed to resist high stresses. For this, one requires a reliable failure criterion. The anisotropic behaviour of composites makes it very difficult to formulate failure criteria and experimentally verify it, which require one to perform necessary bi-axial tests and plot the failure envelopes. Failure criteria are usually based on certain assumption, which are some times questionable. This is because, the failure process in composites is quite complex. The failure in a composite is normally based on initiating failure mechanisms such as fiber breaks, fiber compressive failure, matrix cracks, matrix crushing, delamination, disbonds or a combination of these. The initiating failure mechanism is the one, which is/are responsible for initiating failure in a laminated composites. Initiating failure mechanisms are generally dependant on the type of loading, geometry, material properties, condition of manufacture, boundary conditions, weather conditions etc. Since, composite materials exhibit directional properties, their applications and failure conditions should be properly examined and in addition to this, robust computational tools have to be exploited for the design of structural components for efficient utilisation of these materials. Design of structural components requires reliable failure criteria for the safe design of the components. Several failure criteria are available for the design of composite laminates. None of the available anisotropic strength criteria represents observed results sufficiently accurate to be employed confidently by itself in design. Most of the failure criteria are validated based on the available uniaxial test data, whereas, in practical situations, laminates are subjected to at least biaxial states of stresses. Since, the generation of biaxial test data are very difficult and time consuming to obtain, it is indeed a necessity to develop computational tools for modelling the biaxial behavior of the composite laminates. Understanding of the initiating failure mechanisms and the development of reliable failure criteria is an essential prerequisite for effective utilization of composite materials. Most of the failure criteria, considers the uniaxial test data with constant shear stress to develop failure envelopes, but in reality, structures are subjected to biaxial normal stresses as well as shear stresses. Hence, one can develop different failure envelopes depending upon the percentage of the shear stress content. As mentioned earlier, safe design of the composite structural components require reliable failure criterion. Currently two broad approaches, namely, (1) Damage Tolerance Based Design and (2)Failure Criteria Based Design are in use for the design of laminated structures in aerospace industry. Both approaches have some limitations. The damage tolerance based design suffers from a lack of proper definition of damage and the inability of analytical tools to handle realistic damage. The failure criteria based design, although relatively, more attractive in view of the simplicity, it forces the designer to use unverified design points in stress space, resulting in unpredictable failure conditions. Generally, failure envelopes are constructed using 4 or 5 experimental constants. In this type of approach, small experimental errors in these constants lead to large shift in the failure boundaries raising doubts about the reliability of the boundary in some segments. Further, they contain segments which have no experimental support and so can lead to either conservative or nonconservative designs. Conservative design leads to extra weight, a situation not acceptable in aerospace industry. Whereas, a nonconservative design, is obviously prohibitive, as it implies failure. Hence, both the damage tolerance based design and failure criteria based design have limitations. A new method, which combines the advantages of both the approaches is desirable. This issue is also thoroughly debated in many international conference on composites. Several pioneers in the composite industry indicated the need for further research work in the development of reliable failure criteria. Hence, this is motivated to carry out research work for the development of new failure criterion for the design of composite structures. Several experts meetings held world wide towards the assessment of existing failure theories and computer codes for the design of composite structures. One such meeting is the experts meeting held at United Kingdom in 1991.This meeting held at St. Albans(UK) on ’Failure of Polymeric Composites and Structures: Mechanisms and Criteria for the Prediction of Performance’, in 1991 by UK Science & Engineering Council and UK Institute of Mechanical Engineers. After thorough deliberations it was concluded that 1. There is no universal definition of failure of composites. 2. There is little or lack of faith in the failure criteria that are in current use and 3. There is a need to carry out World Wide Failure Exercise(WWFE) Based on the experts suggestions, Hinton and Soden initiated the WWFE in consultation with Prof.Bryan Harris (Editor, Journal of Composite Science and Tech-nology)to have a program to get comparative assessment of existing failure criteria and codes with following aims 1. Establish the current level of maturity of theories for predicting the failure response of fiber reinforced plastic(FRP)laminates. 2. Closing the knowledge gap between theoreticians and design practitioners in this field. 3. Stimulating the composites’ community into providing design engineers with more robust and accurate failure prediction methods, and the confidence to use them. The organisers invited pioneers in the composite industry for the program of WWFE. Among the pioneer in the composite industry Professor Hashin declined to participate in the program and had written a letter to the organisers saying that, My only work in this subject relates to failure criteria of unidirectional fiber composites, not to laminates. I do not believe that even the most complete information about failure of single plies is sufficient to predict the failure of a laminate, consisting of such plies. A laminate is a structure which undergoes a complex damage process (mostly of cracking) until it finally fails. The analysis of such a process is a prerequisite for failure analysis. ”While significant advances have been made in this direction we have not yet arrived at the practical goal of failure prediction”. Another important conference held in France in 1999, Composites for the next Millennium (Proceedingof Symposium in honor of S.W.Tsaion his 70th Birth Day Torus, France, July 2-3, 1999, pp.19.) also concludedon similar line to the meeting held at UK in 1991. Paul A Lagace and S. Mark Spearing, have pointed out that, by referring to the article on ’Predicting Failure in Composite Laminates: the background to the exercise’, by M.J.Hinton & P.D.Soden, Composites Science and Technology, Vol.58, No.7(1998), pp.1005. ”After Over thirty years of work ’The’ composite failure criterion is still an elusive entity”. Numerous researchers have produced dozens of approaches. Hundreds of papers, manuscripts and reports were written and presentations made to address the latest thoughts, add data to accumulated knowledge bases and continue the scholarly debate. Thus, the out come of these experts meeting, is that, there is a need to develop new failure theories and due to complexities associated with experimentation, especially getting bi-axial data, computational methods are the only viable alternative. Currently, biaxial data on composites is very limited as the biaxial testing of laminates is very difficult and standardization of biaxial data is yet to be done. All these experts comments and suggestions motivated us to carry out research work towards the development of new failure criterion called ’Failure Mechanism Based Failure Criterion’ based on initiating failure mechanisms. The objectives of the thesis are 1. Identification of the failure mechanism based failure criteria for the specific initiating failure mechanism and to assign the specific failure criteria for specific initiating failure mechanism, 2. Use of the ’failure mechanism based design’ method for composite pressurant tanks and to evaluate it, by comparing it with some of the standard ’failure criteria’ based designs from the point of view of overall weight of the pressurant tank, 3. Development of new failure criterion called ’Failure Mechanism Based Failure Criterion’ without shear stress content and the corresponding failure envelope, 4. Development of different failure envelopes with the effect of shear stress depending upon the percentage of shear stress content and 5. Design of composite laminates with the Failure Mechanism Based Failure Criterion using optimization techniques such as Genetic Algorithms(GA) and Vector Evaluated Particle Swarm Optimization(VEPSO) and the comparison of design with other failure criteria such as Tsai-Wu and Maximum Stress failure criteria. The following paragraphs describe about the achievement of these objectives. In chapter 2, a rectangular panel subjected to boundary displacements is used as an example to illustrate the concept of failure mechanism based design. Composite Laminates are generally designed using a failure criteria, based on a set of standard experimental strength values. Failure of composite laminates involves different failure mechanisms depending upon the stress state and so different failure mechanisms become dominant at different points on the failure envelope. Use of a single failure criteria, as is normally done in designing laminates, is unlikely to be satisfactory for all combination of stresses. As an alternate use of a simple failure criteria to identify the dominant failure mechanism and the design of the laminate using appropriate failure mechanism based criteria is suggested in this thesis. A complete 3-D stress analysis has been carried out using a general purpose NISA Finite Element Software. Comparison of results using standard failure criteria such as Maximum Stress, Maximum Strain, Tsai-Wu, Yamada-Sun, Maximum Fiber Strain, Grumman, O’brien, & Lagace, indicate substantial differences in predicting the first ply failure. Results for Failure Load Factors, based on the failure mechanism based approach are included. Identification of the failure mechanism at highly stressed regions and the design of the component, to withstand an artificial defect, representative this failure mechanism, provides a realistic approach to achieve necessary strength without adding unnecessary weight to the structure. It is indicated that the failure mechanism based design approach offers a reliable way of assessing critically stressed regions to eliminate the uncertainties associated with the failure criteria. In chapter 3, the failure mechanism based design approach has been applied to a composite pressurant tanks of upper stages of launch vehicles and propulsion systems of space crafts. The problem is studied using the failure mechanism based design approach, by introducing an artificial matrix crack representative of the initiating failure mechanism in the highly stressed regions and the strain energy release rate (SERR) are calculated. The total SERR value is obtained as 3330.23 J/m2, which is very high compared to the Gc(135 J/m2) value, which means the crack will grow further. The failure load fraction at which the crack has a tendency to grow is estimated to be 0.04054.Results indicates that there are significant differences in the failure load fraction for different failure criteria.Comparison with Failure Mechanism Based Criterion (FMBC) clearly indicates matrix cracks occur at loads much below the design load yet fibers are able to carrythe design load. In chapter 4, a Failure Mechanism Based Failure Criterion(FMBFC)has been proposed for the development of failure envelope for unidirectional composite plies. A representative volume element of the laminate under local loading is micromechanically modelled to predict the experimentally determined strengths and this model is then used to predict points on the failure envelope in the neighborhood of the experimental points. The NISA finite element software has been used to determine the stresses in the representative volume element. From these micro-stresses, the strength of the lamina is predicted. A correction factor is used to match the prediction of the present model with the experimentally determined strength so that, the model can be expected to provide accurate prediction of the strength in the neighborhood of the experimental points. A procedure for the construction of the failure envelope in the stress space has been outlined and the results are compared with the some of the standard and widely used failure criteria in the composite industry. Comparison of results with the Tsai-Wu failure criterion shows that there are significant differences, particularly in the third quadrant, when the ply is under bi-axial compressive loading. Comparison with maximum stress criterion indicates better correlation. The present failure mechanism based failure criterion approach opens a new possibility of constructing reliable failure envelopes for bi-axial loading applications, using the standard uniaxialtest data. In chapter 5, the new failure criterion for laminated composites developed based on initiating failure mechanism as mentioned in chapter 4 for without shear stress condition is extended to obtain the failure envelopes with the shear stress condition. The approach is based on Micromechanical analysis of composites, wherein a representative volume consists of a fiber surrounded by matrix in appropriate volume fraction and modeled using 3-D finite elements to predict the strengths.In this chapter, different failure envelopes are developed by varying shear stress say from 0% of shear strength to 100% of shear strength in steps of 25% of shear strength. Results obtained from this approach are compared with Tsai-Wu and Maximum stress failure criteria. The results show that the predicted strengths match more closely with maximum stress criterion. Hence, it can be concluded that influence of shear stress on the failure of the lamina is of little consequence as far as the prediction of strengths in laminates. In chapter 6, the failure mechanism based failure criterion, developed by the authors is used for the design optimization of the laminates and the percentage savings in total weight of the laminate is presented. The design optimization of composite laminates are performed using Genetic Algorithms. The genetic algorithm is one of the robust tools available for the optimum design of composite laminates. The genetic algorithms employ techniques originated from biology and dependon the application of Darwin’s principle of survival of the fittest. When a population of biological creatures is permitted to evolve over generations, individual characteristics that are beneficial for survival have a tendency to be passed on to future generations, since individuals carrying them get more chances to breed. In biological populations, these characteristics are stored in chromosomal strings. The mechanics of natural genetics is derived from operations that result in arranged yet randomized exchange of genetic information between the chromosomal strings of the reproducing parents and consists of reproduction, cross over, mutation, and inversion of the chromosomal strings. Here, optimization of the weight of the composite laminates for given loading and material properties is considered. The genetic algorithms have the capability of selecting choice of orientation, thickness of single ply, number of plies and stacking sequence of the layers. In this chapter, minimum weight design of composite laminates is presented using the Failure Mechanism Based(FMB), Maximum Stress and Tsai-Wu failure criteria. The objective is to demonstrate the effectiveness of the newly proposed FMB Failure Criterion(FMBFC) in composite design. The FMBFC considers different failure mechanisms such as fiber breaks, matrix cracks, fiber compressive failure, and matrix crushing which are relevant for different loadin gconditions. FMB and Maximum Stress failure criteria predicts byupto 43 percent savings in weight of the laminates compared to Tsai-Wu failure criterion in some quadrants of the failure envelope. The Tsai-Wu failure criterion over predicts the weight of the laminate by up to 86 percent in the third quadrant of the failure envelope compared to FMB and Maximum Stress failure criteria, when the laminate is subjected to biaxial compressive loading. It is found that the FMB and Maximum Stress failure criteria give comparable weight estimates. The FMBFC can be considered for use in the strength design of composite structures. In chapter 7, Particle swarm optimization is used for design optimization of composite laminates. Particle swarm optimization(PSO)is a novel meta-heuristic inspired by the flocking behaviour of birds. The application of PSO to composite design optimization problems has not yet been extensively explored. Composite laminate optimization typically consists in determining the number of layers, stacking sequence and thickness of ply that gives the desired properties. This chapter details the use of Vector Evaluated Particle Swarm Optimization(VEPSO) algorithm, a multi-objective variant of PSO for composite laminate design optimization. VEPSO is a modern coevolutionary algorithm which employs multiple swarms to handle the multiple objectives and the information migration between these swarms ensures that a global optimum solution is reached. The current problem has been formulated as a classical multi-objective optimization problem, with objectives of minimizing weight of the component for a required strength and minimizing the totalcost incurred, such that the component does not fail. In this chapter, an optimum configuration for a multi-layered unidirectional carbon/epoxy laminate is determined using VEPSO. The results are presented for various loading configurations of the composite structures. The VEPSO predicts the same minimum weight optimization and percentage savings in weight of the laminate when compared to GA for all loading conditions.There is small difference in results predicted by VEPSO and GA for some loading and stacking sequence configurations, which is mainly due to random selection of swarm particles and generation of populations re-spectively.The difference can be prevented by running the same programme repeatedly. The Thesis is concluded by highlighting the future scope of several potential applications based on the developments reported in the thesis.
20

[en] COLLAPSE ANALYSIS OF SCREENS USED IN OPEN HOLE COMPLETION / [pt] ANÁLISE DO COLAPSO DE TELAS UTILIZADAS EM SISTEMAS DE CONTENÇÃO DE AREIA EM POÇOS HORIZONTAIS

ANDERSON RAPELLO DOS SANTOS 14 December 2007 (has links)
[pt] A produção de petróleo em alta vazão a partir de reservatórios formados por arenitos friáveis requer a instalação de sistemas de contenção de sólidos para preservar equipamentos de superfície e subsuperfície. Os projetos de explotação para campos constituídos por estes reservatórios têm na completação uma etapa fundamental na construção do poço. Dentre as diversas operações de completação, a instalação de sistemas de contenção de sólidos é uma das mais complexas e envolve uma ampla gama de recursos humanos e financeiros. A alteração no estado de tensões atuante sobre a formação é uma das principais fontes de carregamento dos sistemas de contenção mecânica de sólidos instalados em poços horizontais. O objetivo deste trabalho é desenvolver um modelo para avaliação do desempenho de sistemas de contenção de sólidos do tipo gravel pack quando submetidos aos esforços relacionados ao comportamento geomecânico das formações produtoras e a variação de pressões durante a vida produtiva de um poço de petróleo, permitindo a otimização de projetos destes sistemas sob a ótica da resistência ao colapso das telas. O carregamento imposto sobre estes sistemas é avaliado através da implementação do modelo de Mohr Coulomb solucionado numericamente através do método de elementos finitos (MEF). O programa comercial ABAQUS™ é utilizado em função da sua flexibilidade para solução de modelos não-lineares. Foram analisados sistemas de contenção de areia com os conjuntos de telas tipicamente utilizados na indústria de petróleo. Em nenhum cenário analisado foram verificados indícios de colapso dos tubos indicando a possibilidade de redução da sua resistência mecânica. / [en] Global increase in energy demand and the lack of opportunities on shore or in shallow waters are driving production of hydrocarbons towards deep and ultra deepwater basins, where reservoirs are usually formed by weak and unconsolidated sandstones that require sand control methods to prevent damage in surface and subsurface equipments. Guidelines to select sand control systems are primarily based on sand exclusion, seeking to optimize balance between oil rate and fines production. Another aspect, often overlooked, is collapse strength of the system formed by the sand control equipment and the formation itself, subjected to mechanical loadings that change during life of the well. This contribution presents a method to evaluate collapse strength of sand control systems taking into account mechanical interaction between the formation and sand control screens. Elastoplastic models are used to represent granular materials. Three sand control systems were studied: gravel pack with premium screens, stand alone premium screens and pre-packed screens. A model to describe contact between granular materials (gravel and formation) and soil-pipe interaction is proposed. Results demonstrate that perforated base pipes used in premium screens may be oversized for applications under regular operating conditions.

Page generated in 0.0294 seconds