• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 1
  • Tagged with
  • 67
  • 67
  • 30
  • 29
  • 19
  • 18
  • 17
  • 17
  • 17
  • 15
  • 13
  • 12
  • 11
  • 11
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Software Fault Detection in Telecom Networks using Bi-level Federated Graph Neural Networks / Upptäckt av SW-fel i telekommunikationsnätverk med hjälp av federerade grafiska neurala nätverk på två nivåer

Bourgerie, Rémi January 2023 (has links)
The increasing complexity of telecom networks, induced by the recent development of 5G, is a challenge for detecting faults in the telecom network. In addition to the structural complexity of telecommunication systems, data accessibility has become an issue both in terms of privacy and access cost. We propose a method relying on bi-level Federated Graph Neural Networks to identify anomalies in the telecom network while ensuring reduced communication costs as well as data privacy. Our method considers telecom data as a bi-level graph, where the highest level graph represents the interaction between sites, and each site is further expanded to its software (SW) performance behaviour graph. We developed and compared 4G/5G SW Fault Detection models under 3 settings: (1) Centralized Temporal Graph Neural Networks model: we propose a model to detect anomalies in 4G/5G telecom data. (2) Federated Temporal Graph Neural Networks model: we propose Federated Learning (FL) as a mechanism for privacy-aware training of models for fault detection. (3) Personalized Federated Temporal Graph Neural Networks model: we propose a novel aggregation technique, referred to as FedGraph, leveraging both a graph and the similarities between sites for aggregating the models and proposing models more personalized to each site’s behaviour. We compare the benefits of Federated Learning (FL) models (2) and (3) with centralized training (1) in terms of SW performance data modelling, anomaly detection, and communication cost. The evaluation includes both a scenario with normal functioning sites and a scenario where only a subset of sites exhibit faulty behaviour. The combination of SW execution graphs with GNNs has shown improved modelling performance and minor gains in centralized settings (1). In a normal network context, FL models (2) and (3) perform comparably to centralized training (CL), with slight improvements observed when using the personalized strategy (3). However, in abnormal network scenarios, Federated Learning falls short of achieving comparable detection performance to centralized training. This is due to the unintended learning of abnormal site behaviour, particularly when employing the personalized model (3). These findings highlight the importance of carefully assessing and selecting suitable FL strategies for anomaly detection and model training on telecom network data. / Den ökande komplexiteten i telenäten, som är en följd av den senaste utvecklingen av 5G, är en utmaning när det gäller att upptäcka fel i telenäten. Förutom den strukturella komplexiteten i telekommunikationssystem har datatillgänglighet blivit ett problem både när det gäller integritet och åtkomstkostnader. Vi föreslår en metod som bygger på Federated Graph Neural Networks på två nivåer för att identifiera avvikelser i telenätet och samtidigt säkerställa minskade kommunikationskostnader samt dataintegritet. Vår metod betraktar telekomdata som en graf på två nivåer, där grafen på den högsta nivån representerar interaktionen mellan webbplatser, och varje webbplats utvidgas ytterligare till sin graf för programvarans (SW) prestandabeteende. Vi utvecklade och jämförde 4G/5G SW-feldetekteringsmodeller under 3 inställningar: (1) Central Temporal Graph Neural Networks-modell: vi föreslår en modell för att upptäcka avvikelser i 4G/5G-telekomdata. (2) Federated Temporal Graph Neural Networks-modell: vi föreslår Federated Learning (FL) som en mekanism för integritetsmedveten utbildning av modeller för feldetektering. I motsats till centraliserad inlärning aggregeras lokalt tränade modeller på serversidan och skickas tillbaka till klienterna utan att data läcker ut mellan klienterna och servern, vilket säkerställer integritetsskyddande samarbetsutbildning. (3) Personaliserad Federated Temporal Graph Neural Networks-modell: vi föreslår en ny aggregeringsteknik, kallad FedGraph, som utnyttjar både en graf och likheterna mellan webbplatser för att aggregera modellerna. Vi jämför fördelarna med modellerna Federated Learning (FL) (2) och (3) med centraliserad utbildning (1) när det gäller datamodellering av SW-prestanda, anomalidetektering och kommunikationskostnader. Utvärderingen omfattar både ett scenario med normalt fungerande anläggningar och ett scenario där endast en delmängd av anläggningarna uppvisar felaktigt beteende. Kombinationen av SW-exekveringsgrafer med GNN har visat förbättrad modelleringsprestanda och mindre vinster i centraliserade inställningar (1). I en normal nätverkskontext presterar FL-modellerna (2) och (3) jämförbart med centraliserad träning (CL), med små förbättringar observerade när den personliga strategin används (3). I onormala nätverksscenarier kan Federated Learning dock inte uppnå jämförbar detekteringsprestanda med centraliserad träning. Detta beror på oavsiktlig inlärning av onormalt beteende på webbplatsen, särskilt när man använder den personliga modellen (3). Dessa resultat belyser vikten av att noggrant bedöma och välja lämpliga FL-strategier för anomalidetektering och modellträning på telekomnätdata.
62

Towards Privacy and Communication Efficiency in Distributed Representation Learning

Sheikh S Azam (12836108) 10 June 2022 (has links)
<p>Over the past decade, distributed representation learning has emerged as a popular alternative to conventional centralized machine learning training. The increasing interest in distributed representation learning, specifically federated learning, can be attributed to its fundamental property that promotes data privacy and communication savings. While conventional ML encourages aggregating data at a central location (e.g., data centers), distributed representation learning advocates keeping data at the source and instead transmitting model parameters across the network. However, since the advent of deep learning, model sizes have become increasingly large often comprising million-billions of parameters, which leads to the problem of communication latency in the learning process. In this thesis, we propose to tackle the problem of communication latency in two different ways: (i) learning private representation of data to enable its sharing, and (ii) reducing the communication latency by minimizing the corresponding long-range communication requirements.</p> <p><br></p> <p>To tackle the former goal, we first start by studying the problem of learning representations that are private yet informative, i.e., providing information about intended ''ally'' targets while hiding sensitive ''adversary'' attributes. We propose Exclusion-Inclusion Generative Adversarial Network (EIGAN), a generalized private representation learning (PRL) architecture that accounts for multiple ally and adversary attributes, unlike existing PRL solutions. We then address the practical constraints of the distributed datasets by developing Distributed EIGAN (D-EIGAN), the first distributed PRL method that learns a private representation at each node without transmitting the source data. We theoretically analyze the behavior of adversaries under the optimal EIGAN and D-EIGAN encoders and the impact of dependencies among ally and adversary tasks on the optimization objective. Our experiments on various datasets demonstrate the advantages of EIGAN in terms of performance, robustness, and scalability. In particular, EIGAN outperforms the previous state-of-the-art by a significant accuracy margin (47% improvement), and D-EIGAN's performance is consistently on par with EIGAN under different network settings.</p> <p><br></p> <p>We next tackle the latter objective - reducing the communication latency - and propose two timescale hybrid federated learning (TT-HF), a semi-decentralized learning architecture that combines the conventional device-to-server communication paradigm for federated learning with device-to-device (D2D) communications for model training. In TT-HF, during each global aggregation interval, devices (i) perform multiple stochastic gradient descent iterations on their individual datasets, and (ii) aperiodically engage in consensus procedure of their model parameters through cooperative, distributed D2D communications within local clusters. With a new general definition of gradient diversity, we formally study the convergence behavior of TT-HF, resulting in new convergence bounds for distributed ML. We leverage our convergence bounds to develop an adaptive control algorithm that tunes the step size, D2D communication rounds, and global aggregation period of TT-HF over time to target a sublinear convergence rate of O(1/t) while minimizing network resource utilization. Our subsequent experiments demonstrate that TT-HF significantly outperforms the current art in federated learning in terms of model accuracy and/or network energy consumption in different scenarios where local device datasets exhibit statistical heterogeneity. Finally, our numerical evaluations demonstrate robustness against outages caused by fading channels, as well favorable performance with non-convex loss functions.</p>
63

Federated Learning for Natural Language Processing using Transformers / Evaluering av Federerad Inlärning tillämpad på Transformers för klassificering av analytikerrapporter

Kjellberg, Gustav January 2022 (has links)
The use of Machine Learning (ML) in business has increased significantly over the past years. Creating high quality and robust models requires a lot of data, which is at times infeasible to obtain. As more people are becoming concerned about their data being misused, data privacy is increasingly strengthened. In 2018, the General Data Protection Regulation (GDPR), was announced within the EU. Models that use either sensitive or personal data to train need to obtain that data in accordance with the regulatory rules, such as GDPR. One other data related issue is that enterprises who wish to collaborate on model building face problems when it requires them to share their private corporate data [36, 38]. In this thesis we will investigate how one might overcome the issue of directly accessing private data when training ML models by employing Federated Learning (FL) [38]. The concept of FL is to allow several silos, i.e. separate parties, to train models with the same objective, using their local data and then with the learned model parameters create a central model. The objective of the central model is to obtain the information learned by the separate models, without ever accessing the raw data itself. This is achieved by averaging the separate models’ weights into the central model. FL thus facilitates opportunities to train a model on large amounts of data from several sources, without the need of having access to the data itself. If one can create a model with this methodology, that is not significantly worse than a model trained on the raw data, then positive effects such as strengthened data privacy, cross-enterprise collaboration and more could be attainable. In this work we have used a financial data set consisting of 25242 equity research reports, provided by Skandinaviska Enskilda Banken (SEB). Each report has a recommendation label, either Buy, Sell or Hold, making this a multi-class classification problem. To evaluate the feasibility of FL we fine-tune the pre-trained Transformer model AlbertForSequenceClassification [37] on the classification task. We create one baseline model using the entire data set and an FL model with different experimental settings, for which the data is distributed both uniformly and non-uniformly. The baseline model is used to benchmark the FL model. Our results indicate that the best FL setting only suffers a small reduction in performance. The baseline model achieves an accuracy of 83.5% compared to 82.8% for the best FL model setting. Further, we find that with an increased number of clients, the performance is worsened. We also found that our FL model was not sensitive to non-uniform data distributions. All in all, we show that FL results in slightly worse generalisation compared to the baseline model, while strongly improving on data privacy, as the central model never accesses the clients’ data. / Företags nyttjande av maskininlärning har de senaste åren ökat signifikant och för att kunna skapa högkvalitativa modeller krävs stora mängder data, vilket kan vara svårt att insamla. Parallellt med detta så ökar också den allmänna förståelsen för hur användandet av data missbrukas, vilket har lätt till ett ökat behov av starkare datasäkerhet. 2018 så trädde General Data Protection Regulation (GDPR) i kraft inom EU, vilken bland annat ställer krav på hur företag skall hantera persondata. Företag med maskininlärningsmodeller som på något sätt använder känslig eller personlig data behöver således ha fått tillgång till denna data i enlighet med de rådande lagar och regler som omfattar datahanteringen. Ytterligare ett datarelaterat problem är då företag önskar att skapa gemensamma maskininlärningsmodeller som skulle kräva att de delar deras bolagsdata [36, 38]. Denna uppsats kommer att undersöka hur Federerad Inlärning [38] kan användas för att skapa maskinlärningsmodeller som överkommer dessa datasäkerhetsrelaterade problem. Federerad Inlärning är en metod för att på ett decentraliserat vis träna maskininlärningsmodeller. Detta omfattar att låta flera aktörer träna en modell var. Varje enskild aktör tränar respektive modell på deras isolerade data och delar sedan endast modellens parametrar till en central modell. På detta vis kan varje enskild modell bidra till den gemensamma modellen utan att den gemensamma modellen någonsin haft tillgång till den faktiska datan. Givet att en modell, skapad med Federerad Inlärning kan uppnå liknande resultat som en modell tränad på rådata, så finns många positiva fördelar så som ökad datasäkerhet och ökade samarbeten mellan företag. Under arbetet har ett dataset, bestående av 25242 finansiella rapporter tillgängliggjort av Skandinaviska Ensilda Banken (SEB) använts. Varje enskild rapport innefattar en rekommendation, antingen Köp, Sälj eller Håll, vilket innebär att vi utför muliklass-klassificering. Med datan tränas den förtränade Transformermodellen AlbertForSequence- Classification [37] på att klassificera rapporterna. En Baseline-modell, vilken har tränats på all rådata och flera Federerade modellkonfigurationer skapades, där bland annat varierande fördelningen av data mellan aktörer från att vara jämnt fördelat till vara ojämnt fördelad. Resultaten visar att den bästa Federerade modellkonfigurationen endast presterar något sämre än Baseline-modellen. Baselinemodellen uppnådde en klassificeringssäkerhet på 83.5% medan den bästa Federerade modellen uppnådde 82.8%. Resultaten visar också att den Federerade modellen inte var känslig mot att variera fördelningen av datamängd mellan aktorerna, samt att med ett ökat antal aktörer så minskar klassificeringssäkerheten. Sammanfattningsvis så visar vi att Federerad Inlärning uppnår nästan lika goda resultat som Baseline-modellen, samtidigt så bidrar metoden till avsevärt bättre datasäkerhet då den centrala modellen aldrig har tillgång till rådata.
64

[en] SIGNAL PROCESSING TECHNIQUES FOR ENERGY EFFICIENT DISTRIBUTED LEARNING / [pt] TÉCNICAS DE PROCESSAMENTO DE SINAIS PARA APRENDIZAGEM DISTRIBUÍDA COM EFICIÊNCIA ENERGÉTICA

ALIREZA DANAEE 11 January 2023 (has links)
[pt] As redes da Internet das Coisas (IdC) incluem dispositivos inteligentes que contêm muitos sensores que permitem interagir com o mundo físico, coletando e processando dados de streaming em tempo real. O consumo total de energia e o custo desses sensores afetam o consumo de energia e o custo dos dispositivos IdC. O tipo de sensor determina a precisão da interface analógica e a resolução dos conversores analógico-digital (ADCs). A resolução dos ADCs tem um compromisso entre a precisão de inferência e o consumo de energia, uma vez que o consumo de energia dos ADCs depende do número de bits usados para representar amostras digitais. Nesta tese, apresentamos um esquema de aprendizado distribuído com eficiência energética usando sinais quantizados para redes da IdC. Em particular, desenvolvemos algoritmos de gradiente estocástico com reconhecimento de quantização distribuído (DQA-LMS) e de mínimos quadrados recursivos com reconhecimento de quantização distribuído (DQA-RLS) que podem aprender parâmetros de maneira eficiente em energia usando sinais quantizados com poucos bits, exigindo um baixo custo computacional. Além disso, desenvolvemos uma estratégia de compensação de viés para melhorar ainda mais o desempenho dos algoritmos propostos. Uma análise estatística dos algoritmos propostos juntamente com uma avaliação da complexidade computacional das técnicas propostas e existentes é realizada. Os resultados numéricos avaliam os algoritmos com reconhecimento de quantização distribuída em relação às técnicas existentes para uma tarefa de estimação de parâmetros em que os dispositivos IdC operam em um modo ponto a ponto. Também apresentamos um esquema de aprendizado federativo com eficiência energética usando sinais quantizados para redes de IdC. Desenvolvemos o algoritmo federated averaging LMS (QA-FedAvg-LMS) com reconhecimento de quantização para redes IdC estruturadas por configuração de aprendizado federativo em que os dispositivos IdC trocam suas estimativas com um servidor. Uma estratégia de compensação de viés para QA-FedAvg-LMS é proposta junto com sua análise estatística e a avaliação de desempenho em relação às técnicas existentes com resultados numéricos. / [en] Internet of Things (IoT) networks include smart devices that contain many sensors that allow them to interact with the physical world, collecting and processing streaming data in real time. The total energy-consumption and cost of these sensors affect the energy-consumption and the cost of IoT devices. The type of sensor determines the accuracy of the analog interface and the resolution of the analog-to-digital converters (ADCs). The ADC resolution requirement has a trade-off between sensing performance and energy consumption since the energy consumption of ADCs strongly depends on the number of bits used to represent digital samples. In this thesis, we present an energy-efficient distributed learning framework using coarsely quantized signals for IoT networks. In particular, we develop a distributed quantization-aware least-mean square (DQA-LMS) and a distributed quantization-aware recursive least-squares (DQA-RLS) algorithms that can learn parameters in an energy-efficient fashion using signals quantized with few bits while requiring a low computational cost. Moreover, we develop a bias compensation strategy to further improve the performance of the proposed algorithms. We then carry out a statistical analysis of the proposed algorithms along with a computational complexity evaluation of the proposed and existing techniques. Numerical results assess the distributed quantization-aware algorithms against existing techniques for distributed parameter estimation where IoT devices operate in a peer-to-peer mode. We also introduce an energy-efficient federated learning framework using coarsely quantized signals for IoT networks, where IoT devices exchange their estimates with a server. We then develop the quantization-aware federated averaging LMS (QA-FedAvg-LMS) algorithm to perform parameter estimation at the clients and servers. Furthermore, we devise a bias compensation strategy for QA-FedAvg-LMS, carry out its statistical analysis, and assess its performance against existing techniques with numerical results.
65

Federated Learning in Large Scale Networks : Exploring Hierarchical Federated Learning / Federerad Inlärning i Storskaliga Nätverk : Utforskande av Hierarkisk Federerad Inlärning

Eriksson, Henrik January 2020 (has links)
Federated learning faces a challenge when dealing with highly heterogeneous data and it can sometimes be inadequate to adopt an approach where a single model is trained for usage at all nodes in the network. Different approaches have been investigated to succumb this issue such as adapting the trained model to each node and clustering the nodes in the network and train a different model for each cluster where the data is less heterogeneous. In this work we study the possibilities to improve the local model performance utilizing the hierarchical setup that comes with clustering the participating clients in the network. Experiments are carried out featuring a Long Short-Term Memory network to perform time series forecasting to evaluate different approaches utilizing the hierarchical setup and comparing them to standard federated learning approaches. The experiments are done using a dataset collected by Ericsson AB consisting of handovers recorded at base stations in an European city. The hierarchical approaches didn’t show any benefit over common two-level approaches. / Federated Learning står inför en utmaning när det gäller att hantera data med en hög grad av heterogenitet och det kan i vissa fall vara olämpligt att använda sig av en approach där en och samma modell är tränad för att användas av alla noder i nätverket. Olika approacher för att hantera detta problem har undersökts som att anpassa den tränade modellen till varje nod och att klustra noderna i nätverket och träna en egen modell för varje kluster inom vilket datan är mindre heterogen. I detta arbete studeras möjligheterna att förbättra prestandan hos de lokala modellerna genom att dra nytta av den hierarkiska anordning som uppstår när de deltagande noderna i nätverket grupperas i kluster. Experiment är utförda med ett Long Short-Term Memory-nätverk för att utföra tidsserieprognoser för att utvärdera olika approacher som drar nytta av den hierarkiska anordningen och jämför dem med vanliga federated learning-approacher. Experimenten är utförda med ett dataset insamlat av Ericsson AB. Det består av "handoversfrån basstationer i en europeisk stad. De hierarkiska approacherna visade inga fördelar jämfört med de vanliga två-nivåapproacherna.
66

Lite-Agro: Integrating Federated Learning and TinyML on IoAT-Edge for Plant Disease Classification

Dockendorf, Catherine April 05 1900 (has links)
Lite-Agro studies applications of TinyML in pear (Pyrus communis) tree disease identification and explores hardware implementations with an ESP32 microcontroller. The study works with the DiaMOS Pear Dataset to learn through image analysis whether the leaf is healthy or not, and classifies it according to curl, healthy, spot or slug categories. The system is designed as a low cost and light-duty computing detection edge solution that compares models such as InceptionV3, XceptionV3, EfficientNetB0, and MobileNetV2. This work also researches integration with federated learning frameworks and provides an introduction to federated averaging algorithms.
67

DISTRIBUTED MACHINE LEARNING OVER LARGE-SCALE NETWORKS

Frank Lin (16553082) 18 July 2023 (has links)
<p>The swift emergence and wide-ranging utilization of machine learning (ML) across various industries, including healthcare, transportation, and robotics, have underscored the escalating need for efficient, scalable, and privacy-preserving solutions. Recognizing this, we present an integrated examination of three novel frameworks, each addressing different aspects of distributed learning and privacy issues: Two Timescale Hybrid Federated Learning (TT-HF), Delay-Aware Federated Learning (DFL), and Differential Privacy Hierarchical Federated Learning (DP-HFL). TT-HF introduces a semi-decentralized architecture that combines device-to-server and device-to-device (D2D) communications. Devices execute multiple stochastic gradient descent iterations on their datasets and sporadically synchronize model parameters via D2D communications. A unique adaptive control algorithm optimizes step size, D2D communication rounds, and global aggregation period to minimize network resource utilization and achieve a sublinear convergence rate. TT-HF outperforms conventional FL approaches in terms of model accuracy, energy consumption, and resilience against outages. DFL focuses on enhancing distributed ML training efficiency by accounting for communication delays between edge and cloud. It also uses multiple stochastic gradient descent iterations and periodically consolidates model parameters via edge servers. The adaptive control algorithm for DFL mitigates energy consumption and edge-to-cloud latency, resulting in faster global model convergence, reduced resource consumption, and robustness against delays. Lastly, DP-HFL is introduced to combat privacy vulnerabilities in FL. Merging the benefits of FL and Hierarchical Differential Privacy (HDP), DP-HFL significantly reduces the need for differential privacy noise while maintaining model performance, exhibiting an optimal privacy-performance trade-off. Theoretical analysis under both convex and nonconvex loss functions confirms DP-HFL’s effectiveness regarding convergence speed, privacy performance trade-off, and potential performance enhancement with appropriate network configuration. In sum, the study thoroughly explores TT-HF, DFL, and DP-HFL, and their unique solutions to distributed learning challenges such as efficiency, latency, and privacy concerns. These advanced FL frameworks have considerable potential to further enable effective, efficient, and secure distributed learning.</p>

Page generated in 0.0274 seconds