Spelling suggestions: "subject:"[een] FEDERATED LEARNING"" "subject:"[enn] FEDERATED LEARNING""
61 |
Dynamic GAN-based Clustering in Federated LearningKim, Yeongwoo January 2020 (has links)
As the era of Industry 4.0 arises, the number of devices that are connectedto a network has increased. The devices continuously generate data that hasvarious information from power consumption to the configuration of thedevices. Since the data have the raw information about each local node inthe network, the manipulation of the information brings a potential to benefitthe network with different methods. However, due to the large amount ofnon-IID data generated in each node, manual operations to process the dataand tune the methods became challenging. To overcome the challenge, therehave been attempts to apply automated methods to build accurate machinelearning models by a subset of collected data or cluster network nodes byleveraging clustering algorithms and using machine learning models withineach cluster. However, the conventional clustering algorithms are imperfectin a distributed and dynamic network due to risk of data privacy, the nondynamicclusters, and the fixed number of clusters. These limitations ofthe clustering algorithms degrade the performance of the machine learningmodels because the clusters may become obsolete over time. Therefore, thisthesis proposes a three-phase clustering algorithm in dynamic environmentsby leveraging 1) GAN-based clustering, 2) cluster calibration, and 3) divisiveclustering in federated learning. GAN-based clustering preserves data becauseit eliminates the necessity of sharing raw data in a network to create clusters.Cluster calibration adds dynamics to fixed clusters by continuously updatingclusters and benefits methods that manage the network. Moreover, the divisiveclustering explores the different number of clusters by iteratively selectingand dividing a cluster into multiple clusters. As a result, we create clustersfor dynamic environments and improve the performance of machine learningmodels within each cluster. / ett nätverk ökat. Enheterna genererar kontinuerligt data som har varierandeinformation, från strömförbrukning till konfigurationen av enheterna. Eftersomdatan innehåller den råa informationen om varje lokal nod i nätverket germanipulation av informationen potential att gynna nätverket med olika metoder.På grund av den stora mängden data, och dess egenskap av att vara icke-o.l.f.,som genereras i varje nod blir manuella operationer för att bearbeta data ochjustera metoderna utmanande. För att hantera utmaningen finns försök med attanvända automatiserade metoder för att bygga precisa maskininlärningsmodellermed hjälp av en mindre mängd insamlad data eller att gruppera nodergenom att utnyttja klustringsalgoritmer och använda maskininlärningsmodellerinom varje kluster. De konventionella klustringsalgoritmerna är emellertidofullkomliga i ett distribuerat och dynamiskt nätverk på grund av risken fördataskydd, de icke-dynamiska klusterna och det fasta antalet kluster. Dessabegränsningar av klustringsalgoritmerna försämrar maskininlärningsmodellernasprestanda eftersom klustren kan bli föråldrade med tiden. Därför föreslårdenna avhandling en trefasklustringsalgoritm i dynamiska miljöer genom attutnyttja 1) GAN-baserad klustring, 2) klusterkalibrering och 3) klyvning avkluster i federerad inlärning. GAN-baserade klustring bevarar dataintegriteteneftersom det eliminerar behovet av att dela rådata i ett nätverk för att skapakluster. Klusterkalibrering lägger till dynamik i klustringen genom att kontinuerligtuppdatera kluster och fördelar metoder som hanterar nätverket. Dessutomdelar den klövlande klustringen olika antal kluster genom att iterativt välja ochdela ett kluster i flera kluster. Som ett resultat skapar vi kluster för dynamiskamiljöer och förbättrar prestandan hos maskininlärningsmodeller inom varjekluster.
|
62 |
Two New Applications of Tensors to Machine Learning for Wireless CommunicationsBhogi, Keerthana 09 September 2021 (has links)
With the increasing number of wireless devices and the phenomenal amount of data that is being generated by them, there is a growing interest in the wireless communications community to complement the traditional model-driven design approaches with data-driven machine learning (ML)-based solutions. However, managing the large-scale multi-dimensional data to maintain the efficiency and scalability of the ML algorithms has obviously been a challenge. Tensors provide a useful framework to represent multi-dimensional data in an integrated manner by preserving relationships in data across different dimensions. This thesis studies two new applications of tensors to ML for wireless communications where the tensor structure of the concerned data is exploited in novel ways.
The first contribution of this thesis is a tensor learning-based low-complexity precoder codebook design technique for a full-dimension multiple-input multiple-output (FD-MIMO) system with a uniform planar antenna (UPA) array at the transmitter (Tx) whose channel distribution is available through a dataset. Represented as a tensor, the FD-MIMO channel is further decomposed using a tensor decomposition technique to obtain an optimal precoder which is a function of Kronecker-Product (KP) of two low-dimensional precoders, each corresponding to the horizontal and vertical dimensions of the FD-MIMO channel. From the design perspective, we have made contributions in deriving a criterion for optimal product precoder codebooks using the obtained low-dimensional precoders. We show that this product codebook design problem is an unsupervised clustering problem on a Cartesian Product Grassmann Manifold (CPM), where the optimal cluster centroids form the desired codebook. We further simplify this clustering problem to a $K$-means algorithm on the low-dimensional factor Grassmann manifolds (GMs) of the CPM which correspond to the horizontal and vertical dimensions of the UPA, thus significantly reducing the complexity of precoder codebook construction when compared to the existing codebook learning techniques.
The second contribution of this thesis is a tensor-based bandwidth-efficient gradient communication technique for federated learning (FL) with convolutional neural networks (CNNs). Concisely, FL is a decentralized ML approach that allows to jointly train an ML model at the server using the data generated by the distributed users coordinated by a server, by sharing only the local gradients with the server and not the raw data. Here, we focus on efficient compression and reconstruction of convolutional gradients at the users and the server, respectively. To reduce the gradient communication overhead, we compress the sparse gradients at the users to obtain their low-dimensional estimates using compressive sensing (CS)-based technique and transmit to the server for joint training of the CNN. We exploit a natural tensor structure offered by the convolutional gradients to demonstrate the correlation of a gradient element with its neighbors. We propose a novel prior for the convolutional gradients that captures the described spatial consistency along with its sparse nature in an appropriate way. We further propose a novel Bayesian reconstruction algorithm based on the Generalized Approximate Message Passing (GAMP) framework that exploits this prior information about the gradients. Through the numerical simulations, we demonstrate that the developed gradient reconstruction method improves the convergence of the CNN model. / Master of Science / The increase in the number of wireless and mobile devices have led to the generation of massive amounts of multi-modal data at the users in various real-world applications including wireless communications. This has led to an increasing interest in machine learning (ML)-based data-driven techniques for communication system design. The native setting of ML is {em centralized} where all the data is available on a single device. However, the distributed nature of the users and their data has also motivated the development of distributed ML techniques. Since the success of ML techniques is grounded in their data-based nature, there is a need to maintain the efficiency and scalability of the algorithms to manage the large-scale data. Tensors are multi-dimensional arrays that provide an integrated way of representing multi-modal data. Tensor algebra and tensor decompositions have enabled the extension of several classical ML techniques to tensors-based ML techniques in various application domains such as computer vision, data-mining, image processing, and wireless communications. Tensors-based ML techniques have shown to improve the performance of the ML models because of their ability to leverage the underlying structural information in the data.
In this thesis, we present two new applications of tensors to ML for wireless applications and show how the tensor structure of the concerned data can be exploited and incorporated in different ways. The first contribution is a tensor learning-based precoder codebook design technique for full-dimension multiple-input multiple-output (FD-MIMO) systems where we develop a scheme for designing low-complexity product precoder codebooks by identifying and leveraging a tensor representation of the FD-MIMO channel. The second contribution is a tensor-based gradient communication scheme for a decentralized ML technique known as federated learning (FL) with convolutional neural networks (CNNs), where we design a novel bandwidth-efficient gradient compression-reconstruction algorithm that leverages a tensor structure of the convolutional gradients. The numerical simulations in both applications demonstrate that exploiting the underlying tensor structure in the data provides significant gains in their respective performance criteria.
|
63 |
Federated Neural Collaborative Filtering for privacy-preserving recommender systemsLangelaar, Johannes, Strömme Mattsson, Adam January 2021 (has links)
In this thesis a number of models for recommender systems are explored, all using collaborative filtering to produce their recommendations. Extra focus is put on two models: Matrix Factorization, which is a linear model and Multi-Layer Perceptron, which is a non-linear model. With an additional purpose of training the models without collecting any sensitive data from the users, both models were implemented with a learning technique that does not require the server's knowledge of the users' data, called federated learning. The federated version of Matrix Factorization is already well-researched, and has proven not to protect the users' data at all; the data is derivable from the information that the users communicate to the server that is necessary for the learning of the model. However, on the federated Multi-Layer Perceptron model, no research could be found. In this thesis, such a model is therefore designed and presented. Arguments are put forth in support of the privacy preservability of the model, along with a proof of the user data not being analytically derivable for the central server. In addition, new ways to further put the protection of the users' data on the test are discussed. All models are evaluated on two different data sets. The first data set contains data on ratings of movies and is called MovieLens 1M. The second is a data set that consists of anonymized fund transactions, provided by the Swedish bank SEB for this thesis. Test results suggest that the federated versions of the models can achieve similar recommendation performance as their non-federated counterparts.
|
64 |
Federated Online Learning with Streaming Data for Intrusion Detection Systems : Comparing Federated and Centralized Learning Methods in Online and Offline SettingsArvidsson, Victor January 2024 (has links)
Background. With increased pressure from both regulatory bodies and end-users, interest in privacy preserving machine learning methods have increased among companies and researchers in the last few years. One of the main areas of research regarding this is federated learning. Further, with the current situation in the world, interest in cybersecurity is also at an all time high, where intrusion detection systems are one component of interest. With anomaly-based intrusion detection systems using machine learning methods, it is desirable that these can adapt automatically over time as the network patterns change, resulting in online learning being highly relevant for this application. Previous research has studied offline federated intrusion detection systems. However, there have been very little work performed in the study of online federated learning for intrusion detection systems. Objectives. The objective of this thesis is to evaluate the performance of online federated machine learning methods for intrusion detection systems. Furthermore, the thesis will study the performance relationship between offline and online models for both centralized and federated learning, in order to draw conclusions about the ability to extrapolate from results between the different types of models. Methods. This thesis uses a quasi-experiment to evaluate two different types of models, Naive Bayes and Semi-supervised Federated Learning on Evolving Data Streams (SFLEDS), on three different datasets, NSL-KDD, UNSW-NB15, and CIC-IDS2017. For each model, four variants are implemented: centralized offline, centralized online, federated offline and federated online, and in the federated setting the models are evaluated with 20, 30, and 40 clients. Results. The results show that the best performing model in general is the federated online SFLEDS. They also highlight an important problem with using imbalanced datasets without proper care for data preprocessing and model design. Finally, the results show that there are no general relationships between offline and online models that hold in both the centralized and federated settings in terms of prediction performance. Conclusions. The main conclusion of the thesis is that online federated learning has a lot of potential for the application of intrusion detection systems, but more research is required to find the optimal models and parameters that result in satisfactory performance. / Bakgrund. Med ökat tryck från både tillsynsorgan och slutanvändare har intresset för integritetsbevarande maskininlärning ökat hos företag och forskare under de senaste åren. Ett av huvudområdena där det forskas om detta är inom federerad inlärning. Vidare, med det nuvarande läget i världen är intresset för cybersäkerhet högre än någonsin, där bland annat intrångsdetekteringssystem är av intresse. Med avvikelsebaserade intrångsdetekteringssystem som använder sig av maskininlärning så är det önskvärt att dessa automatiskt kan anpassa sig över tid när nätverksmönster förändras, vilket resulterar i att online maskininlärning är högst relevant för området. Tidigare forskning har studerat federerade offline intrångsdetekteringssystem, men det finns väldigt lite forskning gällande federerad online maskininlärning för intrångsdetekteringssystem. Syfte. Syftet med det här arbetet är att utvärdera prestandan av federerad online maskininlärning för intrångsdetekteringssystem. Vidare kommer det här arbetet att studera prestandaförhållandet mellan offline och online modeller för både centraliserad och federerad inlärning, för att kunna dra slutsatser om förmågan att extrapolera resultat mellan olika typer av modeller. \newline\textbf{Metod.} Det här arbetet använder sig av ett kvasiexperiment för att utvärdera två olika modeller, Naive Bayes och Semi-supervised Federated Learning on Evolving Data Streams (SFLEDS), på tre olika dataset, NSL-KDD, UNSW-NB15 och CIC-IDS2017. För varje modell implementeras fyra varianter: centraliserad offline, centraliserad online, federerad offline och federerad online. De federerade modellerna utvärderas med 20, 30 och 40 klienter. Resultat. Resultaten visar att den generellt bästa modellen är online SFLEDS. De belyser även ett viktigt problem med att använda obalanserade dataset utan tillräcklig hänsyn till förbearbetning av datan och modelldesign. Slutligen visar resultaten att det inte finns något generellt samband mellan offline och online modeller som stämmer för både centraliserad och federerad inlärning när det gäller modellprestanda. Slutsatser. Den huvudsakliga slutsatsen från arbetet är att federerad online maskininlärning har stor potential för intrångsdetekteringssystem, men mer forskning krävs för att hitta den bästa modellen och de bästa parametrarna för att nå ett tillfredsställande resultat.
|
65 |
FEDERATED LEARNING AMIDST DYNAMIC ENVIRONMENTSBhargav Ganguly (19119859) 08 November 2024 (has links)
<p dir="ltr">Federated Learning (FL) is a prime example of a large-scale distributed machine learning framework that has emerged as a result of the exponential growth in data generation and processing capabilities on smart devices. This framework enables the efficient processing and analysis of vast amounts of data, leveraging the collective power of numerous devices to achieve unprecedented scalability and performance. In the FL framework, each end-user device trains a local model using its own data. Through the periodic synchronization of local models, FL achieves a global model that incorporates the insights from all participat- ing devices. This global model can then be used for various applications, such as predictive analytics, recommendation systems, and more.</p><p dir="ltr">Despite its potential, traditional Federated Learning (FL) frameworks face significant hur- dles in real-world applications. These challenges stem from two primary issues: the dynamic nature of data distributions and the efficient utilization of network resources in diverse set- tings. Traditional FL frameworks often rely on the assumption that data distributions remain stationary over time. However, real-world environments are inherently dynamic, with data distributions constantly evolving, which in turn becomes a potential source of <i>temporal</i> het- erogeneity in FL. Another significant challenge in traditional FL frameworks is the efficient use of network resources in heterogeneous settings. Real-world networks consist of devices with varying computational capabilities, communication protocols, and network conditions. Traditional FL frameworks often struggle to adapt to these diverse <i>spatially</i> heterogeneous settings, leading to inefficient use of network resources and increased latency.</p><p dir="ltr">The primary focus of this thesis is to investigate algorithmic frameworks that can miti- gate the challenges posed by <i>temporal</i> and <i>spatial</i> system heterogeneities in FL. One of the significant sources of <i>temporal</i> heterogeneities in FL is owed to the dynamic drifting of client datasets over time, whereas <i>spatial</i> heterogeneities majorly broadly subsume the diverse computational capabilities and network conditions of devices in a network. We introduce two novel FL frameworks: MASTER-FL, which addresses model staleness in the presence of <i>temporally</i> drifting datasets, and Cooperative Edge-Assisted Dynamic Federated Learning CE-FL, which manages both <i>spatial</i> and <i>temporal</i> heterogeneities in extensive hierarchical FL networks. MASTER-FL is specifically designed to ensure that the global model remains accurate and up-to-date even in environments which are characterized by rapidly changing datasets across time. CE-FL, on the other hand, leverages server-side computing capabili- ties, intelligent data offloading, floating aggregation and cooperative learning strategies to manage the diverse computational capabilities and network conditions often associated with modern FL systems.</p>
|
66 |
Software Fault Detection in Telecom Networks using Bi-level Federated Graph Neural Networks / Upptäckt av SW-fel i telekommunikationsnätverk med hjälp av federerade grafiska neurala nätverk på två nivåerBourgerie, Rémi January 2023 (has links)
The increasing complexity of telecom networks, induced by the recent development of 5G, is a challenge for detecting faults in the telecom network. In addition to the structural complexity of telecommunication systems, data accessibility has become an issue both in terms of privacy and access cost. We propose a method relying on bi-level Federated Graph Neural Networks to identify anomalies in the telecom network while ensuring reduced communication costs as well as data privacy. Our method considers telecom data as a bi-level graph, where the highest level graph represents the interaction between sites, and each site is further expanded to its software (SW) performance behaviour graph. We developed and compared 4G/5G SW Fault Detection models under 3 settings: (1) Centralized Temporal Graph Neural Networks model: we propose a model to detect anomalies in 4G/5G telecom data. (2) Federated Temporal Graph Neural Networks model: we propose Federated Learning (FL) as a mechanism for privacy-aware training of models for fault detection. (3) Personalized Federated Temporal Graph Neural Networks model: we propose a novel aggregation technique, referred to as FedGraph, leveraging both a graph and the similarities between sites for aggregating the models and proposing models more personalized to each site’s behaviour. We compare the benefits of Federated Learning (FL) models (2) and (3) with centralized training (1) in terms of SW performance data modelling, anomaly detection, and communication cost. The evaluation includes both a scenario with normal functioning sites and a scenario where only a subset of sites exhibit faulty behaviour. The combination of SW execution graphs with GNNs has shown improved modelling performance and minor gains in centralized settings (1). In a normal network context, FL models (2) and (3) perform comparably to centralized training (CL), with slight improvements observed when using the personalized strategy (3). However, in abnormal network scenarios, Federated Learning falls short of achieving comparable detection performance to centralized training. This is due to the unintended learning of abnormal site behaviour, particularly when employing the personalized model (3). These findings highlight the importance of carefully assessing and selecting suitable FL strategies for anomaly detection and model training on telecom network data. / Den ökande komplexiteten i telenäten, som är en följd av den senaste utvecklingen av 5G, är en utmaning när det gäller att upptäcka fel i telenäten. Förutom den strukturella komplexiteten i telekommunikationssystem har datatillgänglighet blivit ett problem både när det gäller integritet och åtkomstkostnader. Vi föreslår en metod som bygger på Federated Graph Neural Networks på två nivåer för att identifiera avvikelser i telenätet och samtidigt säkerställa minskade kommunikationskostnader samt dataintegritet. Vår metod betraktar telekomdata som en graf på två nivåer, där grafen på den högsta nivån representerar interaktionen mellan webbplatser, och varje webbplats utvidgas ytterligare till sin graf för programvarans (SW) prestandabeteende. Vi utvecklade och jämförde 4G/5G SW-feldetekteringsmodeller under 3 inställningar: (1) Central Temporal Graph Neural Networks-modell: vi föreslår en modell för att upptäcka avvikelser i 4G/5G-telekomdata. (2) Federated Temporal Graph Neural Networks-modell: vi föreslår Federated Learning (FL) som en mekanism för integritetsmedveten utbildning av modeller för feldetektering. I motsats till centraliserad inlärning aggregeras lokalt tränade modeller på serversidan och skickas tillbaka till klienterna utan att data läcker ut mellan klienterna och servern, vilket säkerställer integritetsskyddande samarbetsutbildning. (3) Personaliserad Federated Temporal Graph Neural Networks-modell: vi föreslår en ny aggregeringsteknik, kallad FedGraph, som utnyttjar både en graf och likheterna mellan webbplatser för att aggregera modellerna. Vi jämför fördelarna med modellerna Federated Learning (FL) (2) och (3) med centraliserad utbildning (1) när det gäller datamodellering av SW-prestanda, anomalidetektering och kommunikationskostnader. Utvärderingen omfattar både ett scenario med normalt fungerande anläggningar och ett scenario där endast en delmängd av anläggningarna uppvisar felaktigt beteende. Kombinationen av SW-exekveringsgrafer med GNN har visat förbättrad modelleringsprestanda och mindre vinster i centraliserade inställningar (1). I en normal nätverkskontext presterar FL-modellerna (2) och (3) jämförbart med centraliserad träning (CL), med små förbättringar observerade när den personliga strategin används (3). I onormala nätverksscenarier kan Federated Learning dock inte uppnå jämförbar detekteringsprestanda med centraliserad träning. Detta beror på oavsiktlig inlärning av onormalt beteende på webbplatsen, särskilt när man använder den personliga modellen (3). Dessa resultat belyser vikten av att noggrant bedöma och välja lämpliga FL-strategier för anomalidetektering och modellträning på telekomnätdata.
|
67 |
Towards Privacy and Communication Efficiency in Distributed Representation LearningSheikh S Azam (12836108) 10 June 2022 (has links)
<p>Over the past decade, distributed representation learning has emerged as a popular alternative to conventional centralized machine learning training. The increasing interest in distributed representation learning, specifically federated learning, can be attributed to its fundamental property that promotes data privacy and communication savings. While conventional ML encourages aggregating data at a central location (e.g., data centers), distributed representation learning advocates keeping data at the source and instead transmitting model parameters across the network. However, since the advent of deep learning, model sizes have become increasingly large often comprising million-billions of parameters, which leads to the problem of communication latency in the learning process. In this thesis, we propose to tackle the problem of communication latency in two different ways: (i) learning private representation of data to enable its sharing, and (ii) reducing the communication latency by minimizing the corresponding long-range communication requirements.</p>
<p><br></p>
<p>To tackle the former goal, we first start by studying the problem of learning representations that are private yet informative, i.e., providing information about intended ''ally'' targets while hiding sensitive ''adversary'' attributes. We propose Exclusion-Inclusion Generative Adversarial Network (EIGAN), a generalized private representation learning (PRL) architecture that accounts for multiple ally and adversary attributes, unlike existing PRL solutions. We then address the practical constraints of the distributed datasets by developing Distributed EIGAN (D-EIGAN), the first distributed PRL method that learns a private representation at each node without transmitting the source data. We theoretically analyze the behavior of adversaries under the optimal EIGAN and D-EIGAN encoders and the impact of dependencies among ally and adversary tasks on the optimization objective. Our experiments on various datasets demonstrate the advantages of EIGAN in terms of performance, robustness, and scalability. In particular, EIGAN outperforms the previous state-of-the-art by a significant accuracy margin (47% improvement), and D-EIGAN's performance is consistently on par with EIGAN under different network settings.</p>
<p><br></p>
<p>We next tackle the latter objective - reducing the communication latency - and propose two timescale hybrid federated learning (TT-HF), a semi-decentralized learning architecture that combines the conventional device-to-server communication paradigm for federated learning with device-to-device (D2D) communications for model training. In TT-HF, during each global aggregation interval, devices (i) perform multiple stochastic gradient descent iterations on their individual datasets, and (ii) aperiodically engage in consensus procedure of their model parameters through cooperative, distributed D2D communications within local clusters. With a new general definition of gradient diversity, we formally study the convergence behavior of TT-HF, resulting in new convergence bounds for distributed ML. We leverage our convergence bounds to develop an adaptive control algorithm that tunes the step size, D2D communication rounds, and global aggregation period of TT-HF over time to target a sublinear convergence rate of O(1/t) while minimizing network resource utilization. Our subsequent experiments demonstrate that TT-HF significantly outperforms the current art in federated learning in terms of model accuracy and/or network energy consumption in different scenarios where local device datasets exhibit statistical heterogeneity. Finally, our numerical evaluations demonstrate robustness against outages caused by fading channels, as well favorable performance with non-convex loss functions.</p>
|
68 |
Federated Learning for Natural Language Processing using Transformers / Evaluering av Federerad Inlärning tillämpad på Transformers för klassificering av analytikerrapporterKjellberg, Gustav January 2022 (has links)
The use of Machine Learning (ML) in business has increased significantly over the past years. Creating high quality and robust models requires a lot of data, which is at times infeasible to obtain. As more people are becoming concerned about their data being misused, data privacy is increasingly strengthened. In 2018, the General Data Protection Regulation (GDPR), was announced within the EU. Models that use either sensitive or personal data to train need to obtain that data in accordance with the regulatory rules, such as GDPR. One other data related issue is that enterprises who wish to collaborate on model building face problems when it requires them to share their private corporate data [36, 38]. In this thesis we will investigate how one might overcome the issue of directly accessing private data when training ML models by employing Federated Learning (FL) [38]. The concept of FL is to allow several silos, i.e. separate parties, to train models with the same objective, using their local data and then with the learned model parameters create a central model. The objective of the central model is to obtain the information learned by the separate models, without ever accessing the raw data itself. This is achieved by averaging the separate models’ weights into the central model. FL thus facilitates opportunities to train a model on large amounts of data from several sources, without the need of having access to the data itself. If one can create a model with this methodology, that is not significantly worse than a model trained on the raw data, then positive effects such as strengthened data privacy, cross-enterprise collaboration and more could be attainable. In this work we have used a financial data set consisting of 25242 equity research reports, provided by Skandinaviska Enskilda Banken (SEB). Each report has a recommendation label, either Buy, Sell or Hold, making this a multi-class classification problem. To evaluate the feasibility of FL we fine-tune the pre-trained Transformer model AlbertForSequenceClassification [37] on the classification task. We create one baseline model using the entire data set and an FL model with different experimental settings, for which the data is distributed both uniformly and non-uniformly. The baseline model is used to benchmark the FL model. Our results indicate that the best FL setting only suffers a small reduction in performance. The baseline model achieves an accuracy of 83.5% compared to 82.8% for the best FL model setting. Further, we find that with an increased number of clients, the performance is worsened. We also found that our FL model was not sensitive to non-uniform data distributions. All in all, we show that FL results in slightly worse generalisation compared to the baseline model, while strongly improving on data privacy, as the central model never accesses the clients’ data. / Företags nyttjande av maskininlärning har de senaste åren ökat signifikant och för att kunna skapa högkvalitativa modeller krävs stora mängder data, vilket kan vara svårt att insamla. Parallellt med detta så ökar också den allmänna förståelsen för hur användandet av data missbrukas, vilket har lätt till ett ökat behov av starkare datasäkerhet. 2018 så trädde General Data Protection Regulation (GDPR) i kraft inom EU, vilken bland annat ställer krav på hur företag skall hantera persondata. Företag med maskininlärningsmodeller som på något sätt använder känslig eller personlig data behöver således ha fått tillgång till denna data i enlighet med de rådande lagar och regler som omfattar datahanteringen. Ytterligare ett datarelaterat problem är då företag önskar att skapa gemensamma maskininlärningsmodeller som skulle kräva att de delar deras bolagsdata [36, 38]. Denna uppsats kommer att undersöka hur Federerad Inlärning [38] kan användas för att skapa maskinlärningsmodeller som överkommer dessa datasäkerhetsrelaterade problem. Federerad Inlärning är en metod för att på ett decentraliserat vis träna maskininlärningsmodeller. Detta omfattar att låta flera aktörer träna en modell var. Varje enskild aktör tränar respektive modell på deras isolerade data och delar sedan endast modellens parametrar till en central modell. På detta vis kan varje enskild modell bidra till den gemensamma modellen utan att den gemensamma modellen någonsin haft tillgång till den faktiska datan. Givet att en modell, skapad med Federerad Inlärning kan uppnå liknande resultat som en modell tränad på rådata, så finns många positiva fördelar så som ökad datasäkerhet och ökade samarbeten mellan företag. Under arbetet har ett dataset, bestående av 25242 finansiella rapporter tillgängliggjort av Skandinaviska Ensilda Banken (SEB) använts. Varje enskild rapport innefattar en rekommendation, antingen Köp, Sälj eller Håll, vilket innebär att vi utför muliklass-klassificering. Med datan tränas den förtränade Transformermodellen AlbertForSequence- Classification [37] på att klassificera rapporterna. En Baseline-modell, vilken har tränats på all rådata och flera Federerade modellkonfigurationer skapades, där bland annat varierande fördelningen av data mellan aktörer från att vara jämnt fördelat till vara ojämnt fördelad. Resultaten visar att den bästa Federerade modellkonfigurationen endast presterar något sämre än Baseline-modellen. Baselinemodellen uppnådde en klassificeringssäkerhet på 83.5% medan den bästa Federerade modellen uppnådde 82.8%. Resultaten visar också att den Federerade modellen inte var känslig mot att variera fördelningen av datamängd mellan aktorerna, samt att med ett ökat antal aktörer så minskar klassificeringssäkerheten. Sammanfattningsvis så visar vi att Federerad Inlärning uppnår nästan lika goda resultat som Baseline-modellen, samtidigt så bidrar metoden till avsevärt bättre datasäkerhet då den centrala modellen aldrig har tillgång till rådata.
|
69 |
[en] SIGNAL PROCESSING TECHNIQUES FOR ENERGY EFFICIENT DISTRIBUTED LEARNING / [pt] TÉCNICAS DE PROCESSAMENTO DE SINAIS PARA APRENDIZAGEM DISTRIBUÍDA COM EFICIÊNCIA ENERGÉTICAALIREZA DANAEE 11 January 2023 (has links)
[pt] As redes da Internet das Coisas (IdC) incluem dispositivos inteligentes que contêm muitos sensores que permitem interagir com o mundo físico, coletando e processando dados de streaming em tempo real. O consumo total de energia e o custo desses sensores afetam o consumo de energia
e o custo dos dispositivos IdC. O tipo de sensor determina a precisão da
interface analógica e a resolução dos conversores analógico-digital (ADCs). A
resolução dos ADCs tem um compromisso entre a precisão de inferência e o
consumo de energia, uma vez que o consumo de energia dos ADCs depende
do número de bits usados para representar amostras digitais.
Nesta tese, apresentamos um esquema de aprendizado distribuído com eficiência
energética usando sinais quantizados para redes da IdC. Em particular,
desenvolvemos algoritmos de gradiente estocástico com reconhecimento de
quantização distribuído (DQA-LMS) e de mínimos quadrados recursivos com
reconhecimento de quantização distribuído (DQA-RLS) que podem aprender
parâmetros de maneira eficiente em energia usando sinais quantizados com
poucos bits, exigindo um baixo custo computacional. Além disso, desenvolvemos
uma estratégia de compensação de viés para melhorar ainda mais o
desempenho dos algoritmos propostos. Uma análise estatística dos algoritmos
propostos juntamente com uma avaliação da complexidade computacional
das técnicas propostas e existentes é realizada. Os resultados numéricos
avaliam os algoritmos com reconhecimento de quantização distribuída em
relação às técnicas existentes para uma tarefa de estimação de parâmetros
em que os dispositivos IdC operam em um modo ponto a ponto.
Também apresentamos um esquema de aprendizado federativo com eficiência
energética usando sinais quantizados para redes de IdC. Desenvolvemos o
algoritmo federated averaging LMS (QA-FedAvg-LMS) com reconhecimento
de quantização para redes IdC estruturadas por configuração de aprendizado
federativo em que os dispositivos IdC trocam suas estimativas com um
servidor. Uma estratégia de compensação de viés para QA-FedAvg-LMS é
proposta junto com sua análise estatística e a avaliação de desempenho em
relação às técnicas existentes com resultados numéricos. / [en] Internet of Things (IoT) networks include smart devices that contain many sensors that allow them to interact with the physical world, collecting and processing streaming data in real time. The total energy-consumption and cost of these sensors affect the energy-consumption and the cost of IoT
devices. The type of sensor determines the accuracy of the analog interface and the resolution of the analog-to-digital converters (ADCs). The ADC resolution requirement has a trade-off between sensing performance and energy consumption since the energy consumption of ADCs strongly depends
on the number of bits used to represent digital samples. In this thesis, we present an energy-efficient distributed learning framework using coarsely quantized signals for IoT networks. In particular, we develop
a distributed quantization-aware least-mean square (DQA-LMS) and a distributed quantization-aware recursive least-squares (DQA-RLS) algorithms that can learn parameters in an energy-efficient fashion using signals quantized with few bits while requiring a low computational cost. Moreover, we
develop a bias compensation strategy to further improve the performance of the proposed algorithms. We then carry out a statistical analysis of the proposed algorithms along with a computational complexity evaluation of the proposed and existing techniques. Numerical results assess the distributed
quantization-aware algorithms against existing techniques for distributed parameter estimation where IoT devices operate in a peer-to-peer mode. We also introduce an energy-efficient federated learning framework using coarsely quantized signals for IoT networks, where IoT devices exchange
their estimates with a server. We then develop the quantization-aware federated averaging LMS (QA-FedAvg-LMS) algorithm to perform parameter estimation at the clients and servers. Furthermore, we devise a bias compensation strategy for QA-FedAvg-LMS, carry out its statistical analysis,
and assess its performance against existing techniques with numerical results.
|
70 |
Federated Learning in Large Scale Networks : Exploring Hierarchical Federated Learning / Federerad Inlärning i Storskaliga Nätverk : Utforskande av Hierarkisk Federerad InlärningEriksson, Henrik January 2020 (has links)
Federated learning faces a challenge when dealing with highly heterogeneous data and it can sometimes be inadequate to adopt an approach where a single model is trained for usage at all nodes in the network. Different approaches have been investigated to succumb this issue such as adapting the trained model to each node and clustering the nodes in the network and train a different model for each cluster where the data is less heterogeneous. In this work we study the possibilities to improve the local model performance utilizing the hierarchical setup that comes with clustering the participating clients in the network. Experiments are carried out featuring a Long Short-Term Memory network to perform time series forecasting to evaluate different approaches utilizing the hierarchical setup and comparing them to standard federated learning approaches. The experiments are done using a dataset collected by Ericsson AB consisting of handovers recorded at base stations in an European city. The hierarchical approaches didn’t show any benefit over common two-level approaches. / Federated Learning står inför en utmaning när det gäller att hantera data med en hög grad av heterogenitet och det kan i vissa fall vara olämpligt att använda sig av en approach där en och samma modell är tränad för att användas av alla noder i nätverket. Olika approacher för att hantera detta problem har undersökts som att anpassa den tränade modellen till varje nod och att klustra noderna i nätverket och träna en egen modell för varje kluster inom vilket datan är mindre heterogen. I detta arbete studeras möjligheterna att förbättra prestandan hos de lokala modellerna genom att dra nytta av den hierarkiska anordning som uppstår när de deltagande noderna i nätverket grupperas i kluster. Experiment är utförda med ett Long Short-Term Memory-nätverk för att utföra tidsserieprognoser för att utvärdera olika approacher som drar nytta av den hierarkiska anordningen och jämför dem med vanliga federated learning-approacher. Experimenten är utförda med ett dataset insamlat av Ericsson AB. Det består av "handoversfrån basstationer i en europeisk stad. De hierarkiska approacherna visade inga fördelar jämfört med de vanliga två-nivåapproacherna.
|
Page generated in 0.0357 seconds