• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 622
  • 172
  • 81
  • 28
  • 18
  • 10
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1328
  • 1328
  • 1328
  • 489
  • 222
  • 155
  • 155
  • 148
  • 134
  • 126
  • 119
  • 118
  • 113
  • 98
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
811

On Structural Design of High-Speed Craft

Razola, Mikael January 2013 (has links)
The development in structural design and construction of high-speed craft has been extensive during the last decades. Environmental and economical issues have increased the need to develop more optimized structures, using new material concepts, to reduce weight and increase performance efficiency. However, both lack of, and limitations in design methodology, makes this a difficult task. In this thesis a methodological framework which enables detailed studies of the slamming loads and associated responses for high-speed planing craft in irregular waves is established. The slamming loads can either be formulated based on numerical simulations, or on experimental measurements and pressure distribution reconstruction. Structure responses are derived in the time-domain using finite element analysis. Statistical methods are used to determine design loads and lifetime extreme responses. The framework is applied to perform phenomenological studies of the slamming loading conditions for high-speed craft, and used to highlight and quantify the limitations in the prevailing semi-empirical method for design load determination with respect to slamming. A number of clarifications regarding the original derivation and the applicability of the prevailing semi-empirical method are presented. Finally, several potential improvements to the method are presented and the associated implications discussed. The long-term goal of the research project is to establish a method for direct calculation of loads and response for high-speed planing craft, which can enable design of truly efficient craft structures. The methodology and the results presented in this thesis are concluded to be important stepping-stones towards this goal. / <p>In page VII, Paper B is wrong title. The correct title is "Experiental Evaluation of Slamming Pressure Models Used in Structural Design of High-Speed Craft". QC 20130228</p>
812

Slab track systems for high-speed railways.

Michas, Georgios January 2012 (has links)
In the last 40 years an increase in train speed and axle load around the world and other challenges in the conventional ballasted track system gave birth to ballastless railway track system. This study examines in depth the various slab track systems that are being used today. Their design characteristics as well as the various requirements for efficient use are thoroughly explained. At least 34 different ballastless systems have been recorded in many railway networks throughout the world. The most significant slab track systems are analysed in detail and compared. Slab track designs have significant advantages comparing to ballasted tracks. The most significant are the high stability of the track, the almost non-existent need for maintenance, the long life cycle (60 years) and the reduced weight and height of the track. Their disadvantages against the ballasted tracks are mainly summarized in their higher construction costs. The Finite Element package ABAQUS/CAE is used to model a 3-D slab track design under static traffic loading. The results suggest that slab tracks have profoundly better stability and durability comparing to ballasted tracks mainly due to their higher stiffness and strength. The author underlines the need for further studies to undoubtedly prove the claimed advantages of slab track systems as well as to improve the costs associated with construction.
813

Load capacity of anchorage to concrete at nuclear facilities : Numerical studies of headed studs and expansion anchors

Eriksson, Daniel, Gasch, Tobias January 2011 (has links)
The aim of this thesis was to study the load bearing capacity of anchor plates, used for anchorage to concrete located at nuclear facilities. Two different type of anchor plates were examined, which together constitute the majority of the anchor plates used at Forsmark nuclear facility in Sweden. The first is a cast-in-place anchor plate with headed studs and the second is a post-installed anchor plate which uses sleevetype expansion anchors. Hence, anchors with both a mechanical or a frictional interlock to the concrete were examined. The main analysis tool was the finite element method, through the use of the two commercially available software packages ABAQUS and ADINA and their non-linear material models for concrete and steel. As a first step, the numerical methods were verified against experimental results from the literature. However, these only concern single anchors. The results from the verifications were then used to build the finite element models of the anchor plates. These were then subjected to different load combinations with the purpose to find the ultimate load capacity. Failure loads from the finite element analyses were then compared to the corresponding loads calculated according to the new European technical specification SIS-CEN/TS 1992-4 (2009). Most of the failure loads from the numerical analyses were higher than the loads obtained from the technical specification, although in some cases the numerical results were lower than the technical specification value. However, many conservative assumptions regarding the finite element models were made, hence there might still be an overcapacity present. All analyses that underestimate the failure load were limited to large and slender anchor plates, which exhibit an extensive bending of the steel plate. The bending of the steel plate induce shear forces on the anchors, which leads to a lower tensile capacity. In design codes, which assume rigid steel plates, this phenomenon is neglected. The failure loads from all different load combinations analysed were then used to develop failure envelopes as a demonstration of a useful technique, which can be utilised in the design process of complex load cases.
814

Design of a single-track railway network arch bridge : According to the Eurocodes

Varennes, Maxime January 2011 (has links)
A constant research of more ecological and efficient structures has enabled bridges to be more innovative through the years. Nowadays, as the need is greater than ever, a new kind of bridge is expanding in the entire world: the network arch bridges. The concept was developed by professor and engineer Per Tveit in 1955 and has been improved since then. But it is only for 10 years that many bridges of this sort have been built. The aim of the thesis is to investigate the structural behavior of these bridges and their efficiency comparing to traditional bridges. It is also proving the efficiency of the network arches used for rail traffic. To do so, a single-track railway network arch has been designed according to the Eurocodes. A 2D model has been designed to be optimal and tested under Abaqus for the loads defined in the Eurocodes. Guidelines from the literature and Per Tveit’s work have been used to determine the optimal geometry of the bridge. The steel weight needed for the 75 meters long bridge is assessed from the final design and is the main parameter to compare and evaluate the network arch structural efficiency. These results are compared with Tveit’s statements and with other structures.
815

Dynamic analysis of a portal frame railway bridge using frequency dependent soil structure interaction

Arvidsson, Therese, Li, Jiajia January 2011 (has links)
With the development of high-speed railroads the dynamic behaviour of railroad bridges is increasingly important to explore. Deeper knowledge about the influence of different factors and what should be included in a model is essential if the designer shall be able to make reliable estimates of responses in existing and new structures. One factor is the soil-structure interaction (SSI), describing how the foundation of the bridge and the soil properties affect the behavior of the bridge under dynamic loading. In this thesis, the influence of including SSI in a model of a portal frame railway bridge is studied, and an analysis procedure in the frequency domain for models with frequency-dependent boundary conditions is described. A 3D finite element model of an e isting bridge has been built up, based on the theory of linear elasticity. The model has been given three different types of boundary conditions: clamped, static stiffness and frequency-dependent stiffness from SSI. Results from simulated train passages, with a train set consisting of two wagons, were compared for the different boundary conditions. The models have also been compared with measurement data from the bridge, which has given indications about which model describes reality in the best way. The results show that the model in which SSI is included by frequency dependent boundary conditions is in slightly better agreement with measurement data than the clamped model and the model with static stiffness. The model gives a slightly better damping of the free vibrations and the natural frequencies correspond better with experimental data. The difference in maximum acceleration from a train passage is very small between the different models, even if it is found that the clamped model generally has lower accelerations and hence is non-conservative. It appears that the train speed affects the maximum acceleration, the size of the free vibrations and the natural frequencies that are present in the free vibrations in the models. Further studies are suggested where it is emphasized that an analysis with longer trains, which give resonance phenomena, should be made to see how the different eigenfrequencies in the models affect the accelerations at different speeds. It is also noted that more measurements would be needed in order to draw more general conclusions about the degree of correspondence between the measurements and the models, and to calibrate the parameters of the model against measurement data.
816

DESIGN AND PROCESS OF 3D-PRINTED PARTS USING COMPOSITE THEORY

Garcia, Jordan 01 January 2019 (has links)
3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer. With 3D printing technology, future manufacturing could become vastly efficient. However, it is observed that the procedures used in 3D printing differ substantially among the printers and from those used in conventional manufacturing. In this thesis, the mechanical properties of engineering products fabricated by 3D printing were comprehensively evaluated and then compared with those made by conventional manufacturing. Three open-source 3D printers, i.e., the Flash Forge Dreamer, the Tevo Tornado, and the Prusa, were used to fabricate the identical parts out of the same material (acrylonitrile butadiene styrene). The parts were printed at various positions on the printer platforms and then tested in bending. Results indicate that there exist substantial differences in mechanical responses among the parts by different 3D printers. Specimens from the Prusa printer exhibit the best elastic properties while specimens from the Flash Forge printer exhibit the greatest post-yield responses. There further exist noticeable variations in mechanical properties among the parts that were fabricated by the same printer. Depending on the positions that the parts were placed on a printer platform, the properties of resultant parts can vary greatly. For comparison, identical parts were fabricated using a conventional manufacturing method, i.e., compression molding. Results show that compression molded parts exhibit more robust and more homogeneous properties than those from 3D printing. During 3D printing, the machine code (e.g., the Gcode) would provide the processing instructions (the x, y, and z coordinates and the linear movements) to the printer head to construct the physical parts. Often times the default processing instructions used by commercial 3D printers may not yield the optimal mechanical properties of the parts. In the second part of this thesis, the orientation-dependent properties of 3D printed parts were examined. The multi-layered composite theory was used to design the directions of printing so that the properties of 3D printed objects can be optimized. Such method can potentially be used to design and optimize the 3D printing of complex engineering products. In the last part of this thesis, the printing process of an actual automobile A-pillar structure was designed and optimized. The finite element software (ANSYS) was used to design and optimize the filament orientations of the A-pillar. Actual parts from the proposed designs were fabricated using 3D printer and then tested. Consistent results have been observed between computational designs and experimental testing. It is recommended that the filament orientations in 3D-printing be “designed” or “tailored” by using laminate composite theory. The method would allow 3D printers to produce parts with optimal microstructure and mechanical properties to better satisfy the specific needs.
817

Transformer Design For Dual Active Bridge Converter

Iuravin, Egor 30 July 2018 (has links)
No description available.
818

Resistance and Ultrasonic Spot Welding of Light-Weight Metals

Lu, Ying January 2018 (has links)
No description available.
819

Quantitative Analysis of Valley Stress Relief in the Genesis of Valley-Aligned Cave Master Conduits

McGinnis, Robert J. 04 October 2018 (has links)
No description available.
820

Reexamination of Shear Lag in HSS Tension Members; Side Gusset Plate Connections

Bhat, Akashdeep January 2018 (has links)
No description available.

Page generated in 0.0305 seconds