• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 319
  • 148
  • 84
  • 23
  • 21
  • 18
  • 17
  • 14
  • 14
  • 6
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 776
  • 224
  • 116
  • 85
  • 73
  • 72
  • 67
  • 65
  • 59
  • 55
  • 54
  • 50
  • 50
  • 47
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Study of the Rag Layer: Characterization of Solids

Madjlessikupai, Morvarid (April) Unknown Date
No description available.
332

Développement d'un modèle prédictif de la pénétration percutanée par approches chromatographiques et spectroscopiques

Jungman, Elsa 22 October 2012 (has links) (PDF)
Le stratum corneum (SC), couche supérieure de l'épiderme, est composé principalement de cornéocytes entourés d'une matrice lipidique. Cette structure particulière confère au SC son rôle de barrière et protège l'organisme de la perte en eau, de la pénétration de substances exogènes et de l'irradiation ultra-violette (UV). La matrice lipidique du SC est constituée de trois lipides majeurs : les céramides, les acides gras et le cholestérol organisés en phase cristalline. Cette matrice est la principale voie de pénétration des molécules exogènes à travers la peau. L'estimation de l'absorption cutanée pour l'analyse du risque des produits cosmétiques est basée sur les recommandations de l'Organisation de Coopération et de Développement Économiques (OCDE) qui prend en compte les propriétés physicochimiques des molécules i.e. Log Pow (lipophilie) et MW (masse moléculaire). En effet, l'OCDE considère une absorption de 100% pour une molécule ayant une MW inférieure à 500g/mol et un Log Pow compris en -1 et +4. En dehors de ces valeurs, l'OCDE applique une estimation de 10%. Hors, cette estimation est bien souvent loin de la réalité et a besoin d'être affinée. Notre travail s'est focalisé sur le développement d'un critère d'évaluation de la pénétration cutanée afin de moduler les données de l'OCDE par trois approches différentes : chromatographie d'affinité, spectroscopie de fluorescence et microspectroscopie infra-rouge à transformée de Fourier (FTIR) avec une source synchrotron. Etant donné que les propriétés barrières de la peau sont étroitement liées à la composition en céramides du SC, les méthodes développées en chromatographie d'affinité et spectroscopie de fluorescence se sont focalisées sur l'interaction céramide-molécules. Un critère prédictif de la pénétration percutanée a été défini avec chacune de ces méthodes :  et I. La troisième méthodologie a consisté à développer un autre critère (Sindex) par microspectroscopie FTIR avec une source synchrotron. La distribution cutanée des molécules a été suivie sur coupes microtomées de biopsies humaines. A partir de Sindex, une cartographie prédictive de la pénétration percutanée des molécules a été établie. Notre design expérimental comprenait des molécules (filtres UV, conservateurs, actifs cosmétiques) avec des Log Pow et MW variés (cf annexe 1). La pénétration cutanée de ces molécules a été étudiée avec une méthode de référence : cellules de Franz couplées à la chromatographie. Ces données de référence ont servi à valider les modèles et critères prédictifs développés. Ce travail a permis d'explorer de nouvelles pistes pour l'étude prédictive de la pénétration percutanée et de développer ainsi de nouveaux critères. Utilisés en complément des propriétés physicochimiques des molécules, ces nouveaux critères permettent d'affiner l'estimation de la pénétration cutanée de molécules exogènes pour l'analyse du risque.
333

The hydrogen-bonded water network in the oxygen-evolving complex of photosystem II

Polander, Brandon C. 13 January 2014 (has links)
Protein dynamics play a key role in enzyme-catalyzed reactions. Vibrational spectroscopy provides a method to follow these structural changes and thereby describe the reaction coordinate as a function of space and time. A vibrational spectroscopic technique, reaction-induced FTIR spectroscopy, has been applied to the study of the oxygen-evolving complex (OEC) of photosystem II (PSII). In plant photosynthesis, PSII evolves oxygen from the substrate, water, by the accumulation of photo-oxidizing equivalents at the OEC. Molecular oxygen and protons are the products of this reaction, which is responsible for the maintenance of an aerobic atmosphere on earth. The OEC is a Mn4CaO5 cluster with nearby bound chloride ions. Sequentially oxidized states of the OEC are termed the S states. The dark-stable state is S1, and oxygen is released on the transition from S3 to S0. Using short laser flashes, individual S states are generated, allowing vibrational spectroscopy to be used to study these different oxidation states of the OEC. In current X-ray crystal structures, hydrogen bonds to water molecules are predicted to form an extensive network around the Mn4CaO5 cluster. In the OEC, four peptide carbonyl groups are linked to the water network, which extends to two Mn-bound and two Ca-bound water molecules. This dissertation discusses a vibrational spectroscopic method that uses these peptide carbonyl frequencies as reporters of solvatochromic changes in the OEC. This technique provides a new, high-resolution method with which to study water and protein dynamics in PSII and other enzymes.
334

The chemical forms and plant availability of copper in composting organic wastes

Talbot, Victoria January 2007 (has links)
A seven-step sequential extraction scheme was used to track changes in operationally defined copper speciation during the composting of a mixture of grass clippings and sawdust originating from tanalised timber. Starting materials were either unamended or treated with differing amounts of soluble copper, using a copper acetate solution, and then composted in the laboratory. Results showed that at the start of the experiment over 80% of the copper present in the unamended materials occurred in forms not immediately available for plant uptake. However, composting processes enabled the release of this copper which then, over time, became more bioavailable. Large amounts of copper in the copper amended materials were initially detectable in all fractions except the residual one, but over time it was seen to move from all fractions to the EDTA extractable fraction, thought to determine organically complexed / chelatable metals (Amir, 2005). This continued until an equilibrium was reached and then the water and calcium nitrate extractable forms appeared to hold the excess. Copper as determined by these extracts would be available for plant uptake. In the second experiment, three different organic wastes (grass/sawdust, pig slurry/sawdust and sewage sludge cake/sawdust) to which copper had been added as copper acetate, sulphate or EDTA, were composted in the laboratory. Samples were taken at 0, 105 and 318 days and subjected to a range of analyses: copper by sequential extraction using two different extraction schemes, a chelating resin membrane (CRM) procedure and by XRF spectrometry; FTIR analysis for functional groups; total carbon, nitrogen and sulphur; pH, EC, NH4+ and NO3- nitrogen, COD, germination indices and optical properties of water extracts. Sequential extractions demonstrated clear changes in copper distribution amongst various fractions within the materials, with copper originally present in the materials being transferred from the oxidisable fractions to easily extractable (and hence potentially phytoavailable) fractions. Transfer of copper from available to less available fractions in copper amended materials was also seen with movement of copper within copper EDTA treated materials being the slowest of all. Initial amounts of copper in fraction 1 extracted from all samples determined the rate at which copper was transformed. CRM determined copper correlated strongly with copper from fraction 1 of the Tessier scheme, although changes over time did not correspond well. Other parameters measured indicated that that the material was maturing (decreases in C/N and polysaccharide functional groups). However, other results demonstrated that the composts were still immature and unstable. Such slow decomposition was attributed to the high lignin content of the materials. Nevertheless, immobilisation of potentially phytotoxic level of copper was still demonstrated. The usefulness of chelating resin membrane as a predictor of phytoavailable copper is also discussed.
335

Herstellung und spektroelektrochemische Charakterisierung von Polyalkylanilinen

Probst, Matthias 08 July 1997 (has links)
In dieser Arbeit wird die Herstellung und spektroelektrochemische Charakterisierung von Polymeren aus alkylsubstituierten Anilinderivaten beschrieben. Hierzu wird die zyklische Voltammetrie sowie als in situ-spektroskopische Methoden UV-vis-, FTIR- und Raman-Spektroskopie eingesetzt. Aus allen eingesetzten Monomeren lassen sich elektroaktive und elektrochrome Polymere herstellen. Bei der Mehrzahl der Polymere konnten in situ-Leitfähigkeitsmessungen durchgeführt werden, die eine intrinsische, vom Elektrodenpotential abhängige elektrische Leitfähigkeit zeigen. Der molekulare Aufbau innerhalb der Polymerketten wird durch FTIR- und Raman-Spektroskopie in Analogie zum Polyanilin identifiziert. Er ist wie beim Polyanilin vom Oxidationsgrad abhängig.
336

Herstellung und spektroelektrochemische Charakterisierung von Polyalkylanilinen

Probst, Matthias 05 February 2015 (has links) (PDF)
In dieser Arbeit wird die Herstellung und spektroelektrochemische Charakterisierung von Polymeren aus alkylsubstituierten Anilinderivaten beschrieben. Hierzu wird die zyklische Voltammetrie sowie als in situ-spektroskopische Methoden UV-vis-, FTIR- und Raman-Spektroskopie eingesetzt. Aus allen eingesetzten Monomeren lassen sich elektroaktive und elektrochrome Polymere herstellen. Bei der Mehrzahl der Polymere konnten in situ-Leitfähigkeitsmessungen durchgeführt werden, die eine intrinsische, vom Elektrodenpotential abhängige elektrische Leitfähigkeit zeigen. Der molekulare Aufbau innerhalb der Polymerketten wird durch FTIR- und Raman-Spektroskopie in Analogie zum Polyanilin identifiziert. Er ist wie beim Polyanilin vom Oxidationsgrad abhängig.
337

Biophysical Investigation Of The Effects Of Antioxidants On Normal And Diabetic Rat Bone Tissues At Molecular Level

Boyar, Handan 01 June 2004 (has links) (PDF)
In the first part of this study, the effect of diabetes mellitus on the long bones (femur and tibia) of the streptozocin induced diabetic rats and the effect of selenium (Se) treatment on these bones are investigated at molecular level by Fourier transform infrared (FTIR) spectroscopy, light and electron microscopy. In the second part of this study, the effect of selenium and vitamin E deficiency or selenium toxicity on rat bones have been studied by FTIR spectroscopy. The results of the first part of the present study revealed that the changes observed in the mineral and matrix phases of diabetic bones, briefly, the increase in the mineral crystal size, the decrease in the acid phosphate and carbonate content, the increase in the ratio of pyridinoline [Pyr] cross-links to dihydroxylysinonorleucine [DHLNL] cross-links present in collagen I of the bone tissue as well as the increase in the lipid to protein ratio of the matrix are quite similar to those seen in osteoporotic patients and animal models and confirms the evidence of diabetic osteoporosis. Histologic studies carried out with light and electron microscopy supported these findings. FTIR spectroscopic analysis revealed that sodium selenite treatment had some restoring effects on the deviated properties of the microstructure of diabetic bones. The results of the second part of this study revealed that the deficiency of selenium led to increase in the crystal size of the bone minerals, decreases in acid phosphate and labile carbonate content and increase in the Pyr to DHLNL ratio as in the case of diabetic bones. These results can be indicative of the importance of selenium in glucose metabolism.The results of Se excess group are similar to those of Se deficient group except that toxic amount of selenium led to increase in the relative amount of acid phosphate. This can affect the pH of the mineral environment and lead to deformation of the bone tissue. It can be concluded from FTIR spectroscopic and light microscopic findings that both antioxidant deficient and excess diets cause almost similar defects in the mineral matrix phases of rat long bones. Overall results may reflect the importance of antioxidants for human life and if they are used in proper amounts they can be preventive for the complications of diabetes seen in bones as well as other organs. However, further investigations are necessary for the therapeutic usage of selenium, since the treatment of control group rat femurs with sodium selenite led to some structural defects.
338

Biosortion Sites For Lead [pb (ii)] In Phanerochaete Chrysosporium

Kaya, Levent 01 September 2004 (has links) (PDF)
Biosorption is a phenomenon involving the mechanisms that basically mediate heavy metal tolerance of microorganisms as well as sequestration of heavy metals from environment. Different classes of microorganisms have different biosorption capacities, as a result of the differences in composition and types of functional groups found on cell surfaces. The present study was undertaken to identify the molecular mechanisms for lead [Pb(II)] biosorption in the white-rot fungus, Phanerochaete chrysosporium. The methodology involved selective blocking of the functional groups known to participate in heavy metal biosorption and allowed us to determine their relative roles in Pb (II) biosorption in this organism. The relative concentrations of the Pb (II) sorbed from the aqueous environment and Mg2+ and Ca2+ ions released to the aqueous environment were measured and compared with both native and chemically-modified biomasses by using atomic absorption spectroscopy. Fourier-Transform Infrared (FTIR) spectroscopy technique was used to monitor and analyze the molecular-level changes in both native and chemically modified cell surfaces upon Pb (II) exposure. Interactions of Pb (II) with the biomass surface was determined by observing the changes in wavenumber and absorbance of NH stretching and Amide I bands arising from the amine groups and C=O stretching band arising from the carboxyl groups. The roles of phosphate groups and lipids were also investigated. Carboxyl groups seemed to be the most important functional groups for Pb (II) biosorption in P. chrysosporium, since the biosorption capacity dramatically decreased (by 92.8 %) in carboxyl groups-blocked biomass. Amine groups were found to play a secondary and minor role in Pb (II) biosorption, only a slight decrease (6 %) in Pb (II) biosorption was detected with amine groups-blocked biomass. Blocking of phosphate groups provided a small increase in biosorptive capacity and did not appear to have much significant role in biosorption. Upon chemical treatment with acetone to extract lipids of the cell surfaces, an increase of 20.3 % in the Pb (II) biosorptive capacity was determined. It was concluded that carbonyl and carboxyl groups of chitin and glucan are the major sites and ion exchange via these groups is the main mechanism for Pb (II) biosorption in P. chrysosporium.
339

Determination Of Narcotic And Psychotropic Substances By Using Infrared Spectroscopy

Baran, Ozlem 01 July 2005 (has links) (PDF)
Narcotic and psychotropic substances are all chemicals that affect a person&rsquo / s mental activities, perceptual abilities, behavior and level of consciousness / they may cause physical and/or psychological dependence. For determination of narcotic and psychotropic substances, chromatographic techniques are usually preferred which are aimed to identify the target chemicals and require several extraction steps. In this study, an Infrared Spectrometric method has been developed for qualitative determination of most widely encountered substances (morphine, heroin, cocaine, MDMA (3,4-methylenedioxymethamhetamine) and amphetamine) and additives (caffeine, paracetamol and lactose). Standard reference materials and illicit samples have been analyzed in powdered form by using Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) technique. In the first part, a spectral FTIR database was constituted from the standard references. Illicit samples containing drugs and additives in varying percentages were analyzed using the same method and their database forecast results were compared with results from Gas Chromatography and High Pressure Liquid Chromatography. In the second part of the study, the possibility of finding a similarity between two samples just by comparing their spectra was investigated. For this purpose, all illicit sample spectra were collected in a new database, and then randomly selected samples were searched using this database. Most of the search attempts resulted in a correct match. Consequently, it has been observed that FTIR-ATR can be used as a priory detection step for classification studies / moreover with this technique pre-determination of narcotic and psychotropic substances can be done simply and rapidly.
340

The Characterization Of Bacteria With Fourier Transform Infrared(ftir) Spectroscopy

Garip, Sebnem 01 September 2005 (has links) (PDF)
New and rapid techniques for the characterization and identification of bacteria would have an important role in clinical microbiology and in food analysis because of an increasing prevalence of infectious diseases and In this work we carried out two approaches. In the first study the characterization and differentiation of mesophilic and thermophilic bacteria were investigated by using Fourier Transform Infrared (FTIR) Spectroscopic technique. In the second study, we investigated the characterization and identification of 3 Bacillus and Micrococcus species Our results from first approach show that there was a dramatic difference between mesophilic and thermophilic bacteria. The protein concentration was high, lipid concentration, the level of triglycerides and the unsaturated acyl chains decreased in thermophilic bacteria. We found that in thermophilic bacteria PO- 2 groups become hydrogen bounded. In addition, our results suggest that the cellular DNA content was low in thermophilic bacteria. Moreover there were characteristic peaks for both mesophilic and thermophilic bacteria and these peaks can be used for the differentiation of these two bacteria group. There were also some specific peaks that can be used for the differentiation of Escherichia coli and Lactobacillus plantarum at species level. In the second approach, our results show that there were significant spectral differences between Bacillus and Micrococcus species such as the proportion of unsaturated acyl chains in triglycerides were higher in Micrococcus species. Moreover we observed different bands that may be explained by an acetate oxidation via the tricarboxylic acid cycle and an exopolymer formation in Micrococcus species. In addition to that another band similar to glycogen, may be explained by a glycogen-like storage material in Micrococcus species. Also there are characteristic peaks that can be used for identification of Micrococcus spp.

Page generated in 0.0388 seconds