Spelling suggestions: "subject:"[een] GUIDES"" "subject:"[enn] GUIDES""
121 |
Microwave diagnosis of inhomogeneous plasma boundary layers /Flynn, James Terrence January 1967 (has links)
No description available.
|
122 |
Le processus d'apprentissage expérientiel en situation guidée d'aventureGrieco, Jean-Nicolas January 2008 (has links)
Ce mémoire porte sur l'apprentissage expérientiel en situation guidée d'aventure. Les guides ne sont pas formés pour accompagner les gens qui désirent apprendre à partir de leur voyage. L'objectif de la recherche propose de décrire les apprentissages et le processus d'apprentissage en situation guidés d'aventure. Nous avons choisi de répertorier l'experience de 11 personnes inscrites à des voyages d'aventure. Afin de recueillir leurs propos, nous leur avons remis un journal de bord. Nous avons ensuite soumis les contenus des journaux à une analyse qualitative par thématisation. Les résultats de notre recherche se manifestent sous la forme d'objets de réflexion. Le processus d'apprentissage qui se déroule en tourisme d'aventure, et qui se rattache aux modelés théoriques que nous avons ressortis, est un processus expérientiel. En somme, les gens apprennent sur eux-même lorsqu'ils experimentent une situation, qu'ils y réfléchissent, qu'ils réajustent leurs objectifs et qu'ils remettent en pratique leurs nouveaux acquis.
|
123 |
NONLINEAR GUIDED WAVES AND NONLINEAR PRISM COUPLING IN THIN FILM WAVEGUIDES WITH LIQUID-CRYSTAL CLADDING.VALERA ROBLES, JESUS DANIEL. January 1986 (has links)
The rigorous descriptions of linear and nonlinear guided wave theory are given together with a geometrical description that helps in the understanding of the physical phenomena taking place. The nonlinear waveguide discussed in this dissertation is composed of a linear thin film and substrate with a cladding material whose refractive index varies with the intensity of the light. Experimentally, this was accomplished, by placing an oriented liquid crystal (highly nonlinear but extremely slow) on top of a thin film glass waveguide. When the liquid crystal used was K15, light-induced mode cutoff was observed. The TE(,0) mode became leaky as the guided wave power was increased. This was a consequence of the light-induced increase in refractive index due to thermal effects. This behaviour was studied as a function of temperature. Light by light modulation was also accomplished with this setup. The theory of the linear and nonlinear prism coupler and the first experimental investigations on the nonlinear prism coupler are given. The nonlinear prism coupler used was obtained by depositing a small amount of MBBA liquid crystal in the gap beween the input coupling prism and the thin film. The basic properties of the nonlinear prism coupler were demonstrated experimentally and the results obtained were verified to have their origin in the temperature component of the nonlinear index of refraction. Good qualitative agreement between the theory developed and experiments were obtained. Bistability and switching in a thin film waveguide with a K18 liquid crystal cladding has been demonstrated for the first time. These experiments made use of the interesting phenomena associated with the nematic to isotropic phase transition. Such behaviour was satisfactorily explained by the intense light scattering associated with the critical opalescence that accompanies such a phase transition in a liquid crystal. Both the TE(,0) and the TM(,0) modes were found to exhibit such behaviour.
|
124 |
THEORY AND FABRICATION OF SUB-MICRON GRATINGS ON NONLINEAR OPTICAL WAVEGUIDES.MOSHREFZADEH, ROBERT SHAHRAM. January 1987 (has links)
Because of their compatibility with the planar concept of integrated optics, grating couplers offer the most satisfactory means of coupling light into thin film optical waveguides. The purpose of this dissertation has been to study the behaviour, both theoretically and experimentally, and fabrication of grating couplers in nonlinear waveguides. A theory of nonlinear grating couplers is presented based on a coupled-mode approach. The dependence of coupling efficiency on incident beam intensity, beam size, beam position, incident angle, chirp rate, and waveguide losses have been examined all in the presence of nonlinearities in the waveguide. It is reported that, in the presence of nonlinearities, the coupling efficiency decreases with increasing incident power. Different ways of optimizing the coupling efficiency at high incident power levels are presented. These include adjusting the beam size, the coupling angle, and chirping the grating. A new technique is reported for fabrication of regular period, chirped, and curved photoresist gratings. The experimental arrangement is essentially based on Lloyd's mirror fringes and is characterized by its stability, simplicity, and versatility. We also report on successful use of Reactive Ion-Beam Etching (RIBE) with C₂F₆ gas in producing very smooth and deep gratings with high aspect ratios in different waveguide structures. Experimental coupling efficiencies of up to 40% are reported in polystyrene waveguides using etched grating couplers. Experiments are reported in support of the theoretical findings of this dissertation using a polystyrene waveguide with thermal nonlinearity.
|
125 |
ALL-OPTICAL NONLINEAR WAVEGUIDE DEVICES.GIBBONS, WAYNE MICHAEL. January 1987 (has links)
The properties of all-optical nonlinear waveguide devices are investigated. In particular, the nonlinear directional coupler (NLDC) and nonlinear Mach-Zehnder interferometer (NLMZ) are analyzed using perturbation theory. The perturbation theory provides differential equations that describe the amplitude of the waveguide modes as a function of the propagation distance. To be practical, these waveguide devices require nonlinear phase shifts of π or more. Therefore, the theoretical investigation of these devices emphasizes their fabrication in bulk and multiple-quantum-well (MQW) gallium arsenide (GaAs). For the first time, absorption, carrier diffusion, and thermal effects are included in the theoretical investigation of the NLMZ and NLDC. The nonlinear dependence of the coupling terms, which has been neglected in all previous work, is shown to be significant for semiconductor based NLDC's. The effects of carrier diffusion on the nonlinear response of a GaAs waveguide is demonstrated using a self-consistent numerical method. The effects are heavily dependent on the waveguide geometry, and, therefore, should be included in the analysis of nonlinear semiconductor waveguide devices. However, if the diffusion length is large compared to the mode width, carrier diffusion simplifies the investigation since the nonlinear absorption and index change are uniform across the mode. This important conclusion is used in the models for the NLMZ and NLDC. The theoretical models predict the NLMZ and NLDC should work in bulk and MQW GaAs. To demonstrate that the required nonlinear phase shifts for the NLMZ and NLDC are indeed possible in bulk and MQW GaAs, the first experimental observation of electronic optical bistability in a MQW GaAs strip-loaded waveguide is recounted. This original research illustrated that phase shifts in excess of 2π are possible in MQW GaAs waveguides and, therefore, the future of all-optical waveguide devices in semiconductors is optimistic.
|
126 |
Application of diffraction grating theory to analysis and fabrication of waveguide gratings.Li, Lifeng. January 1988 (has links)
This dissertation includes three separate studies of related waveguide grating phenomena. These studies deal with a numerical improvement of the integral method of diffraction grating theory, the theoretical analysis of waveguide gratings, and fabrication techniques for photoresist grating masks. The first topic addresses the acceleration of the convergence of the integral kernels. To improve the performance of the integral method for calculating diffraction grating efficiencies, the convergence of the integral kernels is studied. A nonlinear sequence transformation, Levin's u-transformation, is successfully applied to accelerate the convergence of the integral kernels. The computer execution time saving is significant. The application details and many numerical examples are given. The second subject is the ray optics theory of waveguide grating analysis. To establish a linkage between the analysis of diffraction gratings and the analysis of waveguide gratings, a new rigorous ray optics theory is developed. It takes into account phase changes on diffraction, multiple diffraction processes, depletion of the incident guided wave, and lateral shifts. A general characteristic equation that determines the waveguide grating attenuation (coupling) coefficient is derived. The symmetry properties of grating diffraction are applied to waveguide grating analysis for the first time. Lateral shifts of optical rays at a periodically corrugated interface similar to the Goos-Haenchen shift at a planar interface are suggested. The third subject is the in situ control of the development of photoresist grating masks. The existing method for monitoring and modeling photoresist grating development are modified and extended to monitoring and modeling photoresist grating mask development. Experimental examples, detailed theoretical considerations, and computer simulations are presented.
|
127 |
DEGENERATE FOUR WAVE MIXING IN THIN FILM OPTICAL WAVEGUIDES (NONLINEAR OPTICS, INTEGRATED, PHASE CONJUGATION, SIGNAL PROCESSING).KARAGULEFF, CHRIS. January 1985 (has links)
The incentive for conducting Degenerate Four Wave Mixing (DFWM) within guided wave devices is two-fold: (1) By coupling the optical beams into guided wave devices, the optical power densities can be increased orders of magnitude due to the tight confinement of the beams. Such an increase in power density means a concomitant increase in conversion efficiency of the signal beam. (2) The potential signal processing applications of DFWM (logic gates, switching, correlation/convolution), particularly for ultra-fast serial processing, would be better exploited, and adjoined to existing integrated circuit technology, by such an integrated optic/guided wave approach. In this dissertation we describe experiments and present data confirming the presence of DFWM within a planar glass thin film with carbon disulphide as the nonlinear cover medium. Optical pulses from a Q-switched, frequency doubled Nd:YAG laser are coupled into the glass film. The nonlinear polarization required to produce the desired conjugate signal is generated within the CS₂ by the evanescent tails of the guided input beams as they probe the nonlinear cover medium. The signals measured agree well with theory, but because they were so small in magnitude, signal-to noise ratios were small due to stray background radiation scattering from beamsplitters and other associated optics. Additionally, recent studies (Jain & Lind, 1983) indicate nonlinear responses in semiconductor (CdS/Se) doped glasses, commercially available as color glass filters, that are orders of magnitude higher than corresponding nonlinearities within CS₂, in addition to possessing subnanosecond response times. We have performed experiments upon such glasses in an effort to fabricate nonlinear optical waveguides within them via ion-exchange techniques. We have successfully fabricated single mode planar guides, but they are currently too lossy to allow demonstration of any guided wave nonlinearities. Also, we describe experiments in which we have measured (bulk) DFWM grating lifetimes with greater precision than previously reported. Results indicate a fast (20 to 50 pico-seconds, depending on the particular glass) electronic response, superimposed upon, but clearly distinguishable from, a slower (10's of nanoseconds) thermal response.
|
128 |
Nonlinear prism coupling in an organic waveguideKeilbach, Kevin Anthony, 1963- January 1988 (has links)
Computer modeling of prism coupling of pulsed laser irradiation at a wavelength of 1064 nm into an organic polymer waveguide with Kerr Law nonlinearities showed that the prism coupling technique was inherent problems that make it difficult to accurately determine the magnitude of the refractive index change. Uncertainty in knowledge of the gap spacing under the prism leads to errors in any estimates of these nonlinear refractive index changes. Results from prism coupling experiments conducted on a polymer waveguide with a pulsed laser are inconclusive.
|
129 |
Adéquation du traitement des troubles dépressifs au CanadaDuhoux, Arnaud January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
130 |
Investigations of Nonlinear Optical Phenomenon and Dispersion in Integrated Photonic DevicesMcMillan, James Flintoft January 2019 (has links)
Integrated photonics is the field of shrinking and simplifying the fabrication of devices that guide and manipulate light. It not only offers to greatly lower the size and cost of systems used in optical communications it also offers a platform on which new physical phenomenon can be explored by being able to fabricate and manipulate structures on the scale of the wavelength of light.
One such platform in integrated photonics is that of two-dimensional slab photonic crystals. These structures exhibit a photonic band-gap, a band of optical frequencies that are prohibited from propagating within the medium, that can be used to guide and confine light.
When used to create photonic crystal waveguides these waveguides exhibit unique dispersion properties that demonstrate very low optical group velocities, so called "slow-light".
This dissertation begins with the practical realization of design and fabrication of such waveguides using the silicon-on-insulator material system using conventional deep-UV photolithography fabrication techniques. It will detail and demonstrate the effect physical dimensions have on the optical transmission of these devices as well as their optical dispersion.
These photonic crystal waveguides will then be used to demonstrate the enhancement of nonlinear optical phenomenon due to the slow-light phenomenon they exhibit. First spontaneous Raman scattering will be theoretically demonstrated to be enhanced by slow-light and then experimentally shown to be enhanced in a practical realization. The process of four-wave mixing will be demonstrated to be enhanced in these devices and be shown to be greatly affected by the unique optical dispersion within these structures.
Additionally, we will examine the dispersion that exists in silicon nitride microring resonators and the effect it has on the use of these devices to generate optical frequency combs. This is done by leveraging the dispersion measurement methods used to characterize photonic crystal waveguides.
We conclude this work by examining the avenues of future work that can be explored in the area of photonic crystal waveguides.
|
Page generated in 0.0425 seconds