• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 15
  • 12
  • 11
  • 10
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 117
  • 117
  • 39
  • 34
  • 29
  • 27
  • 23
  • 20
  • 19
  • 19
  • 16
  • 14
  • 14
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Vliv tepelné vodivosti na efektivitu akumulace tepla / The effect of thermal conductivity on the heat storage efficiency

Steidl, Martin January 2016 (has links)
The diploma thesis is focused on the dependence of heat storage on thermal conductivity, which is characterized by the thermal conductivity coefficient. Two basic materials were chosen for the measurements – universal plaster mixture and gypsum plaster. The thermal conductivity of the materials was increased by adding milled graphite powder, which conducts the heat very well. The taken samples were then examined for differences in the behaviour in the non-stationary thermal field and thermal-technical parameters – the specific heat capacity and the thermal conductivity coefficient – were determined.
92

Aluminum foams composite : elaboration and thermal properties for energy storage / Mousses d’aluminium composites : élaboration et propriétés thermiques pour le stockage d’énergie

Zhang, Chuan 07 July 2017 (has links)
L'objectif de cette thèse est d'étudier et d'optimiser le processus de fabrication des mousses métalliques et le comportement thermique du matériau de la mousse d'aluminium/matériau de changement de phase (MCP) par des méthodes expérimentales et numériques. Le processus d’élaboration de la mousse d’aluminium à pore ouvert est développé et optimisé pour contrôler précisément les paramètres de fabrication. Deux modèles de mousse d'aluminium à haute porosité (MAHP)/MCP composite et à faible porosité (MALP)/MCP composite sont établis pour la simulation numérique. En simulant le processus de fusion d'un système de stockage d'énergie, les composites MAHP/MCP et MALP/MCP sont comparés numériquement afin d'évaluer la performance de stockage d'énergie thermique. Les résultats montrent que la mousse d'aluminium améliore nettement le processus de transfert de chaleur dans MCP en raison de sa haute conductivité thermique. La porosité des mousses d'aluminium influence non seulement le processus de fusion du composite mais aussi la performance de stockage d'énergie thermique. Grâce à la collaboration avec EPF, une nouvelle méthode d’élaboration des mousses périodiques d'aluminium à pore ouvert est développée dans cette thèse sur la base d’impression 3D. Le comportement thermique des mousses d'aluminium périodiques à pore ouvert/MCP est analysé expérimentalement et numériquement / The objective of this thesis is to study and optimize the manufacturing process of metal foams and the thermal behavior of the aluminum foam/phase change material (PCM) composite by experimental and numerical methods. The manufacturing process of open-cell aluminum foam is developed and optimized to precisely control the parameters of mufacturing. Two pore-scale models of high porosity aluminum foams (HPAF)/PCM composite and low porosity aluminum foams (LPAF)/PCM composite are established for numerical simulation. By simulating the melting process of a layer energy storage system, the HPAF/PCM and LPAFS/PCM composite are compared numerically in order to evaluate the energy storage performance. The results show that aluminum foam improves greatly the heat transfer process in PCM due to its high thermal conductivity. The porosity of aluminum foams could not only influence the melting process of composite but also the energy storage performance. Thanks to the collaboration with EPF, a new manufacturing method of periodic open-cell aluminum foams is developed based on 3D rapid tooling. The thermal behavior of the periodic open-cell aluminum foams/PCM composite is experimentally and numerically analyzed
93

Integrace materiálů s fázovou změnou ve stavebních konstrukcích / Integration of phase change materials in building structures

Klubal, Tomáš January 2017 (has links)
The thesis deals with the integration of phase change materials (PCMs) into building structures. The basic requirement is improved thermal stability during the summer season without using an air conditioner. This can be achieved by increasing the thermal storage capacity of the building structures. If the thermal capacity cannot be increased on the level of weight, phase change materials can be used. These materials are capable of storing latent heat and thus increasing the thermal storage capacity of the building. In the thesis the phase change materials were investigated in a thermal incubator by thermal analysis and, above all, in full-scale experiments using comparative measurements. The comparative measurements were carried out in two attic rooms at the Faculty of Civil Engineering, Brno University of Technology, where in one was used as a reference and the other for the experiment. Manufactured heat storage panels were installed in the experimental room. These panels are composed of a base plate; the capillary tubes placed on it are coated with modified plaster. The gypsum plaster is modified with micro-capsules paraffin for improving the thermal storage capacity. This system is connected to a thermal air-water pump, by which the storage panels can be additionally cooled or heated. In the experimental measurements, different operating modes were investigated and their effect on the indoor environment was evaluated. Thermal storage in PCMs dampens the temperature amplitude in the building during the summer season and, at the same time, allows the stored heat to be discharged during the night. Moreover, the time interval of withdrawing electric energy from the supply mains is much shorter than in the case of air conditioning. A conventional air conditioner must operate simultaneously with the thermal load, i.e. at the time of peak consumption of electric energy. Thanks to the set regimes, the installed system is capable of responding to external thermal condit
94

Ammonia Metal Halides Thermochemical Heat Storage System Design / Design av termokemiskt värmelagringssytem med ammoniak-metallhalogenider

Laios, Michail January 2017 (has links)
One of the most crucial issues nowadays is the protection of the environment and the replacement of fossil fuels, which are abundantly used around the world, with more efficient and renewable sources. The highest portion of global energy demands today is used in heating and cooling purposes. One way of alleviating the fossil-based thermal energy uses is to harvest excess thermal energy using thermochemical storage materials (TCMs) for use at heating/cooling demands at different times and locations. Along this, in this master’s thesis, a bench-scale thermochemical heat storage (TCS) system is numerically designed, as a part of a collaborative project: Neutrons for Heat Storage (NHS), funded by Nordforsk. The TCS system that is designed herein employs the reversible chemical reaction of ammonia with a metal halide (MeX) for a heat storage capacity of 0.5 kWh, respectively releasing and storing heat during absorption and desorption of ammonia into and from the MeX. This system is designed for low temperature heat applications, around 40-80 °C. SrCl2 is chosen as the metal halide to be used, based on the research outcomes in determining the most suitable materials conducted by NHS project partners. In the ammonia-SrCl2 system, only the absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3 are considered. The main reason is because absorption/desorption between the last ammine and SrCl2 undergoes at a significantly higher/lower reaction pressure (for a given temperature), with a significant volume change compared to the rest of the ammines, and therefore is practically less cost effective. This thesis also includes a detailed discussion of four different thermochemical storage designs from literature, found as the most relevant to the present TCS system study, which use the reaction between ammonia and metal halides. The first system that was examined is a TCS system built by the NHS project partners at Technical University of Denmark (DTU), owing to its similarities with the desired project, regarding the design and parameters the system uses. This system works in batch mode, only allowing either absorption (i.e. heat release) or desorption (i.e. heat storage) at a given cycle. Thus, upgrading the design of this TCS system at DTU is considered as a most-likely solution to the research objectives of this current thesis project. Moreover, the TCS system at DTU uses storage conditions and desorption temperature similar to the current project’s desired low temperature range of 40-80 °C. The second system discussed herein from literature uses two reactors for cold and heat generation, which means that both charging and discharging processes occur simultaneously. This simultaneous operability is the main reason that this particular system was examined in this thesis. The next discussed system from literature also uses two reactors, for absorption and desorption processes, which work reversibly when each process is completed, like in the desired concept of this project. These two systems (i.e., the secondly and the thirdly discussed systems) use the reversible solid-gas reaction for absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3, however, the conditions of pressure and temperature between them differ. The second system from literature operates at desorption and absorption at respective conditions of 96 °C, 15 bar and 87 °C, 11 bar while the third system discussed operates at 103 °C, 16 bar and 59 °C, 3 bar during desorption and absorption respectively. The last system from literature that is discussed herein provides the same desorption temperature of 80 °C. Inaddition this particular study suggests that the reaction of solid with gaseous NH3 is better (than the solid with liquid NH3 reaction) based on results derived from several different low-pressure experiments of the reactions. The main differences between all these discussed systems from literature, as opposed to the desired TCS system design in this thesis project, concern the systems’ operating mode and the pressure and temperature-conditions. The first difference is that only one of the examined systems pumps the solid VIII powder salt around the system in contrast to the others that keep the salt static inside the reactors and pumped only the ammonia around the system, as chosen in the current system. The second difference concerns the operating conditions during absorption and desorption reactions, where these different systems operate at a widely different pressure and temperature conditions as compared to the current system expectations. Thus, there are four main lessons that were learnt via this literature analysis, to improve the TCS system at DTU to the desired new system in this work. The first lesson is related to the reactants’ transportation mechanism that should be used in this system. Regarding this, it was decided to maintain the solid salt (metal halide) stationary inside each reactor (but not pumping it instead of ammonia), similar to the majority of designs discussed from literature. According to the second and third lessons, the solid-gas reaction is the most suitable solution and only the reactions of absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3 are considered, following the experience from literature (for the reasons explained earlier). The last lesson regards the system’s suitable operating conditions and more specifically the TCS system’s temperatures that should match the district heating temperatures. Thus, the temperature point that was chosen as a priority was 80 °C, from the range 40- 80 °C set in the partner project NHS. To maintain this condition, therefore, the most suitable condition of pressure of both reactions (according to the equilibrium pressure vs temperature curve) was chosen to be at around 8 bar. This same pressure was chosen for both reactions, since the pressure difference between these reactors and the storage of ammonia (i.e. from 8 to 10 bar) should be as small as possible due to the high costs that can arise in the case of a higher pressure difference (i.e. requiring more compressors and heat exchangers). Inspired by these literature cases, firstly a conceptually suitable TCS system was proposed in this project and after that the final desired system was designed and was implemented and evaluated numerically. The numerical design and optimization of the chosen TCS system was performed herein by using the software Aspen Plus (version 9), which contains both fluids and solids in a simulation environment, using consistent physical properties. This TCS system is designed to store and release heat at around 80 °C and 8 bar through absorption and desorption by using two identical reactors respectively. Each reactor includes the amount of around 1 kg (more specifically 0.985 kg) strontium chloride salt reacting with 1.7 kg of ammonia. A verification system is also modelled in Aspen, using available experimental data from literature. Here, the modelled novel system design was adapted to this chosen other system layout from literature which uses the same reaction pair, yet at different operating conditions. This adapted system design in Aspen was then used to verify the chosen configuration and the reliability of the constructed system for the NHS project. Good agreements between the modelled results in Aspen against the available experimental data of this verification model are obtained. A sensitivity analysis is also conducted herein on the proposed novel TCS system to identify the optimum operating conditions and the behaviour of the chosen most important parameters of the system. The designed system provides an energy storage capacity of 0.5 kWh for the specific amounts (in volumetric flow rates) of ammonia and monoammine of strontium chloride, that comes from the analysis, of 1.08696 e-05 kmol/s and 1.5528 e-06 kmol/s respectively. For these specific values of the HTF, the analysis showed that the volumetric flow rates of the heat and cold external sources must be 1.56 l/min (which is decreasing with the increase of the inlet HTF temperature) and 0.42 l/min (which is increasing with the increase of the inlet HTF temperature) respectively. In conclusion, this study presents an ammonia-SrCl2 TCS benchscale system design that allows continuous heat storage and release, in an easy-to-scale up design, also suggesting optimum operating conditions. / En av de mest avgörande frågorna i dag är skyddet av miljön och utfasningen av fossila bränslen som används allmänt över hela världen för mer effektiva och förnybara resurser. Den största delen av den globala energibehovet idag avser uppvärmnings- och kylapplikationer. Ett sätt att minska fossilbaserad termiskenergianvändning är att lagra överskottsvärmeenergi genom termokemiska lagringsmaterial (TCM) och använda den för värme- och kylbehov vid olika tidpunkter och platser. I samband med detta är ett termokemiskt värmelagringssystem numeriskt utformat i detta mastersexamensprojekt, som en del av ett samarbetsprojekt Neutrons for Heat Storage (NHS) finansierat av Nordforsk. Det termokemiska lagringssystemet (TCS) som är konstruerat utnyttjar den reversibla kemiska reaktionen av ammoniak med en metallhalogenid (MeX) för en värmelagringskapacitet på 0.5 kWh, och frigör och lagrar värme respektive under absorption och desorption av ammoniak till och från MeX. Systemet är designat för lågtemperaturuppvärmningstillämpningar runt 40-80 °C. SrCl2 väljs som det mest lämpliga metallhalogeniden för systemet, baserat på studier som utförts av NHS-projektpartnerna. I ammoniak SrCl2-systemet beaktas endast absorption och desorption mellan SrCl2NH3 och SrCl28NH3. De huvudsakliga orsakerna till detta är att absorptionen/desorptionen mellan den sista aminen och SrCl2 kräver ett betydligt högre/lägre reaktionstryck (för en given temperatur), och resulterar i en betydande volymförändring jämfört med resten av aminerna, och är därför praktiskt taget mindre kostnadseffektivt. Detta mastersexamensprojekt inkluderar en detaljerad genomgång av fyra olika TCS-system från litteratur som använder reaktionen mellan ammoniak och metallhalogenider. Dessa väljs här eftersom dessa anses vara de mest relevanta (från litteratur) jämfört med det valda systemet i denna studie. Det första undersökta systemet är ett system byggt av NHS-projektpartnerna vid Danmarks Tekniska Universitet (DTU). Detta har valts på grund av likheterna med det önskade systemet i det aktuella mastersexamensprojektet, vad gäller systemdesign och parametrar. Detta system fungerar i batch-läge, vilket endast tillåter antingen absorption (dvs värmeavgivning) eller desorption (dvs värmelagring) under en specifik cykel. Således kan en uppgraderad design av detta TCS-system vid DTU möjligen vara en lämplig lösning på forskningsmålen för detta mastersexamensprojekt. Dessutom använder detta TCS-system från DTU ganska liknande driftsförhållanden (temperaturer och tryck) i nivå med det aktuella projektets önskade lågtemperaturintervall på 40-80 °C. Det andra systemet från den litteratur som diskuterats använder två reaktorer för kyla och värmeproduktion, vilket innebär att både laddningsoch urladdningsprocesser sker samtidigt. Denna samtidiga operation är främst anledningen till att systemet undersöktes, eftersom detta är en önskad funktion att uppnå i det aktuella projektet. Nästa system från den litteratur som diskuteras häri använder också två reaktorer för absorptions- och desorptionsprocesser, som fungerar reversibelt när varje process är klar, precis som önskat i detta projekt. Dessa två system (dvs det andra och det tredje diskuterade systemen) använder den reversibla fastgasreaktionen för absorption och desorption mellan SrCl2NH3 och SrCl28NH3, dock vid olika tryck- och temperaturförhållanden. Det andra systemet arbetar nämligen under kombinationer av absorption och desorption av 96 °C, 15 bar och 87 °C, 11 bar, medan det tredje systemet arbetar vid 103 °C, 16 bar respektive 59 °C, 3 bar. Det sista systemet som diskuterats från litteraturen arbetar vid samma temperatur som det önskade systemet gör (dvs. 80 ° C) och genom olika lågtrycksexperiment visar att den fasta salt-gasreaktionen är ett bättre val än reaktionen av det fasta saltet med flytande gasreaktion. De viktigaste skillnaderna mellan alla dessa diskuterade system från litteratur i motsats till det önskade TCS-system i detta mastersexamensprojekt, avser systemdriftläge samt deras tryck och X temperaturförhållanden. Den första skillnaden är att endast ett av alla undersökta system pumpar saltet i fast pulverform, till skillnad från de andra som håller saltet stillastående i reaktorerna och endast pumpar ammoniak. Den andra skillnaden gäller driftsförhållandena under absorptions- och desorptionsreaktioner där dessa system arbetar vid mycket olika tryck- och temperaturförhållanden jämfört med det nuvarande systemet. Således, från översynen av alla system, finns det fyra huvudsakliga lärdomar för att förbättra TCS-systemet vid DTU till det önskade nya systemet. Den första är relaterad till reaktanttransportmekanismen som bör användas i detta system. I detta avseende har det beslutats att hålla det fasta saltet (metallhalogenid) stillastående i varje reaktor (men inte pumpa det istället för ammoniak), till skillnad från de flesta system i litteraturen. Enligt dem andra och tredje lektionerna är den fasta gasreaktionen den mest lämpliga lösningen och endast reaktionerna på absorption och desorption mellan SrCl2∙NH3 och SrCl2∙8NH3 bör övervägas enligt erfarenheten från litteraturen (av de skäl som förklarats tidigare). Den sista lärdomen avser systemets lämpliga driftsförhållanden och mer specifikt TCS-systemets temperaturer för att matcha fjärrvärmetemperaturerna. Den temperaturpunkten valts som prioritet, från området 40-80 °C inställt av moderprojektet NHS, sattes till 80 °C. För att bibehålla detta tillstånd var det lämpligaste tryckvillkoret för båda reaktionerna (enligt jämviktstrycket kontra temperaturkurva) valdes att ligga på cirka 8 bar. Samma tryck valdes för båda reaktionerna, eftersom tryckskillnaden mellan dessa reaktorer och lagring av ammoniak (dvs. från 8 till 10 bar) borde vara så liten som möjligt på grund av de höga kostnaderna som kan uppstå vid högre tryckskillnad (dvs. fler kompressorer krävs och värmeväxlare). Inspirerad av denna litteratur föreslogs för det första ett konceptuellt lämpligt TCS-system i detta mastersexamensprojekt, varefter det slutliga systemet implementerades och utvärderades numeriskt för de önskade förhållandena. Den numeriska utformningen och optimeringen av det valda TCS-systemet utfördes här med hjälp av programvaran Aspen Plus (version 9), som innehåller både vätskor och fasta ämnen i en simuleringsmiljö, med konstant fysiska egenskaper. Detta TCS-system är utformat för att lagra och släppa värme vid cirka 80 °C och 8 bar genom absorption och desorption med användning av två identiska reaktorer respektive. Varje reaktor innefattar cirka 1 kg (närmare bestämt 0.985 kg) strontiumkloridsalt reagerande med 1.7 kg ammoniak. Ett verifieringssystem modelleras också i Aspen med hjälp av tillgängliga experimentella data från litteraturen. I detta anpassades den modellerade nya systemdesignen till denna valda andra verifieringssystemlayout från litteratur, som använder samma reaktionspar, men under olika driftsförhållanden. Denna anpassade systemdesign i Aspen användes sedan för att verifiera den valda konfigurationen och tillförlitligheten för det designade systemet för NHS-projektet. Här erhålls ett bra avtal för denna verifieringssystemdesign mellan Aspenmodellresultaten och experimentdata. Här utförs också en känslighetsanalys för det utformade TCSsystemet i det aktuella projektet för att identifiera de optimala driftsförhållandena och beteendet för de valda viktigaste parametrarna i systemet. Det konstruerade systemet ger en energilagringskapacitet på 0.5 kWh för de specifika mängderna (i volymflöde) av ammoniak och monoamin av strontiumklorid, som kommer från analysen, av 1.08696 e-05 kmol/s och 1.5528 e-06 kmol/s respektive. För dessa specifika värden på värmeöverföringsvätskan visade analysen att de volymetriska flödeshastigheterna för värme och kalla yttre källor måste vara 1.56 l/min (vilket minskar när temperaturen på värmeöverföringsvätskan ökar) och 0.42 l/min (som ökar när temperaturen på värmeöverföringsvätskan ökar). Sammanfattningsvis presenterar denna studie ett ammoniak-SrCl2 TCS-bänkskålsystem som möjliggör kontinuerlig värmelagring och frigöring, har en design som är lätt att anpassa och föreslår också optimala driftsförhållanden.
95

PERFORMANCE ANALYSIS FOR A RESIDENTIAL-SCALE ICE THERMAL ENERGY STORAGE SYSTEM

Andrew David Groleau (17499033) 30 November 2023 (has links)
<p dir="ltr">Ice thermal energy storage (ITES) systems have long been an economic way to slash cooling costs in the commercial sector since the 1980s. An ITES system generates cooling in the formation of ice within a storage tank. This occurs during periods of the day when the cost of electricity is low, normally at night. This ice is then melted to absorb the energy within the conditioned space. While ITES systems have been prosperous in the commercial sector, they have yet to take root in the residential sector.</p><p dir="ltr">The U.S. Department of Energy (DoE) has published guidelines for TES. The DoE guidelines include providing a minimum of four hours of cooling, shifting 30-50% of a space’s cooling load to non-peak hours, minimizing the weight, volume, complexity, and cost of the system, creating a system than operates for over 10,000 cycles, enacting predictive control measures, and being modular to increase scale for larger single-family and multi-family homes [1]. The purpose of this research is to develop a model that meets these guidelines.</p><p dir="ltr">After extensive research in both experimental data, technical specifications, existing models, and best practices taken from the works of others a MATLAB model was generated. The modeled ITES system is comprised of a 1m diameter tank by 1m tall. Ice was selected as the PCM. A baseline model was constructed with parameters deemed to be ideal. This model generated an ITES system that can be charged in under four hours and is capable of providing a total of 22.18 kWh of cooling for a single-family home over a four-hour time period. This model was then validated with experimental data and found to have a root mean squared error of 0.0959 for the system state of charge. During the validation both the experimental and model estimation for the water/ice within the tank converged at the HTF supply temperature of -5.2°C.</p><p dir="ltr">With the model established, a parametric analysis was conducted to learn how adjusting a few of the system parameters impact it. The first parameter, reducing the pipe radius, has the potential to lead to a 152.6-minute reduction in charge time. The second parameter, varying the heat transfer fluid (HTF) within the prescribed zone of 0.7 kg/s to 1.2 kg/s, experienced a 4.8-minute increase in charge time for the former and a decrease in charge time by 5.4 minutes for the latter. The third parameter, increasing the pipe spacing and consequently increasing the ratio of mass of water to mass of HTF, yielded a negative impact. A 7.1mm increase in pipe spacing produced a 16.6-minute increase in charge time. Meanwhile, a 14.2mm increase in pipe spacing created a 93.3-minute increase in charge time and exceeded the charging time limit of five hours.</p><p dir="ltr">This functioning model establishes the foundation of creating a residential-scale ITES system. The adjustability and scalability of the code enable it to be modified to user specifications. Thus, allowing for various prototypes to be generated based on it. The model also lays the groundwork to synthesize a code containing an ITES system and a heat pump operating as one. This will aid in the understanding of residential-scale ITES systems and their energy effects.</p>
96

Cooling Capacity Assessment of Semi-closed Greenhouses

Lee, Wee Fong 22 June 2010 (has links)
No description available.
97

Design of Induction heating system for AlSi PCM to use as an alternative charging solution in Azelio´s thermal energy storage system (TES.POD).

Gandhi, Ketul January 2022 (has links)
This thesis is a part of the research work for Azelio TES.POD (Thermal energy storage. power on demand). It is a patented thermal energy storage system developed by Swedish cleantech company Azelio AB. The objective of this thesis work to find an alternative charging technology system that can be validated to be efficient and safe in operation for the charging of TES.POD. Induction heating technology is chosen as an alternative charging solution. Derived design steps to implement induction heater as a charging unit then selection of PCM container compatible with induction heater. Later simulating to evaluate total flux path in Finite Element Method Magnetics (FEMM) simulation tool which proposes the electrical results. The electrical performance of the induction heater indicates almost 9% higher electrical losses than the charging mechanism of the existing TES.POD design. However, from a safety standpoint, the alternate charging approach appears to be safer in operation than the existing system. Additionally, it reflects better intuitiveness from a manufacturing viewpoint.
98

Thermal energy storage in metallic phase change materials

Kotze, Johannes Paulus 12 1900 (has links)
Thesis (PhD) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: Currently the reduction of the levelised cost of electricity (LCOE) is the main goal of concentrating solar power (CSP) research. Central to a cost reduction strategy proposed by the American Department of Energy is the use of advanced power cycles like supercritical steam Rankine cycles to increase the efficiency of the CSP plant. A supercritical steam cycle requires source temperatures in excess of 620°C, which is above the maximum storage temperature of the current two-tank molten nitrate salt storage, which stores thermal energy at 565°C. Metallic phase change materials (PCM) can store thermal energy at higher temperatures, and do not have the drawbacks of salt based PCMs. A thermal energy storage (TES) concept is developed that uses both metallic PCMs and liquid metal heat transfer fluids (HTF). The concept was proposed in two iterations, one where steam is generated directly from the PCM – direct steam generation (DSG), and another where a separate liquid metal/water heat exchanger is used – indirect steam generation, (ISG). Eutectic aluminium-silicon alloy (AlSi12) was selected as the ideal metallic PCM for research, and eutectic sodium-potassium alloy (NaK) as the most suitable heat transfer fluid. Thermal energy storage in PCMs results in moving boundary heat transfer problems, which has design implications. The heat transfer analysis of the heat transfer surfaces is significantly simplified if quasi-steady state heat transfer analysis can be assumed, and this is true if the Stefan condition is met. To validate the simplifying assumptions and to prove the concept, a prototype heat storage unit was built. During testing, it was shown that the simplifying assumptions are valid, and that the prototype worked, validating the concept. Unfortunately unexpected corrosion issues limited the experimental work, but highlighted an important aspect of metallic PCM TES. Liquid aluminium based alloys are highly corrosive to most materials and this is a topic for future investigation. To demonstrate the practicality of the concept and to come to terms with the control strategy of both proposed concepts, a storage unit was designed for a 100 MW power plant with 15 hours of thermal storage. Only AlSi12 was used in the design, limiting the power cycle to a subcritical power block. This demonstrated some practicalities about the concept and shed some light on control issues regarding the DSG concept. A techno-economic evaluation of metallic PCM storage concluded that metallic PCMs can be used in conjunction with liquid metal heat transfer fluids to achieve high temperature storage and it should be economically viable if the corrosion issues of aluminium alloys can be resolved. The use of advanced power cycles, metallic PCM storage and liquid metal heat transfer is only merited if significant reduction in LCOE in the whole plant is achieved and only forms part of the solution. Cascading of multiple PCMs across a range of temperatures is required to minimize entropy generation. Two-tank molten salt storage can also be used in conjunction with cascaded metallic PCM storage to minimize cost, but this also needs further investigation. / AFRIKAANSE OPSOMMING: Tans is die minimering van die gemiddelde leeftydkoste van elektrisiteit (GLVE) die hoofdoel van gekonsentreerde son-energie navorsing. In die kosteverminderingsplan wat voorgestel is deur die Amerikaanse Departement van Energie, word die gebruik van gevorderde kragsiklusse aanbeveel. 'n Superkritiese stoom-siklus vereis bron temperature hoër as 620 °C, wat bo die 565 °C maksimum stoor temperatuur van die huidige twee-tenk gesmelte nitraatsout termiese energiestoor (TES) is. Metaal fase veranderingsmateriale (FVMe) kan termiese energie stoor by hoër temperature, en het nie die nadele van soutgebaseerde FVMe nie. ʼn TES konsep word ontwikkel wat gebruik maak van metaal FVM en vloeibare metaal warmteoordrag vloeistof. Die konsep is voorgestel in twee iterasies; een waar stoom direk gegenereer word uit die FVM (direkte stoomopwekking (DSO)), en 'n ander waar 'n afsonderlike vloeibare metaal/water warmteruiler gebruik word (indirekte stoomopwekking (ISO)). Eutektiese aluminium-silikon allooi (AlSi12) is gekies as die mees geskikte metaal FVM vir navorsingsdoeleindes, en eutektiese natrium – kalium allooi (NaK) as die mees geskikte warmteoordrag vloeistof. Termiese energie stoor in FVMe lei tot bewegende grens warmteoordrag berekeninge, wat ontwerps-implikasies het. Die warmteoordrag ontleding van die warmteruilers word aansienlik vereenvoudig indien kwasi-bestendige toestand warmteoordrag ontledings gebruik kan word en dit is geldig indien daar aan die Stefan toestand voldoen word. Om vereenvoudigende aannames te bevestig en om die konsep te bewys is 'n prototipe warmte stoor eenheid gebou. Gedurende toetse is daar bewys dat die vereenvoudigende aannames geldig is, dat die prototipe werk en dien as ʼn bevestiging van die konsep. Ongelukkig het onverwagte korrosie die eksperimentele werk kortgeknip, maar dit het klem op 'n belangrike aspek van metaal FVM TES geplaas. Vloeibare aluminium allooie is hoogs korrosief en dit is 'n onderwerp vir toekomstige navorsing. Om die praktiese uitvoerbaarheid van die konsep te demonstreer en om die beheerstrategie van beide voorgestelde konsepte te bevestig is 'n stoor-eenheid ontwerp vir 'n 100 MW kragstasie met 15 uur van 'n TES. Slegs AlSi12 is gebruik in die ontwerp, wat die kragsiklus beperk het tot 'n subkritiese stoomsiklus. Dit het praktiese aspekte van die konsep onderteken, en beheerkwessies rakende die DSO konsep in die kollig geplaas. In 'n tegno-ekonomiese analise van metaal FVM TES word die gevolgtrekking gemaak dat metaal FVMe gebruik kan word in samewerking met 'n vloeibare metaal warmteoordrag vloeistof om hoë temperatuur stoor moontlik te maak en dat dit ekonomies lewensvatbaar is indien die korrosie kwessies van aluminium allooi opgelos kan word. Die gebruik van gevorderde kragsiklusse, metaal FVM stoor en vloeibare metaal warmteoordrag word net geregverdig indien beduidende vermindering in GLVE van die hele kragsentrale bereik is, en dit vorm slegs 'n deel van die oplossing. ʼn Kaskade van verskeie FVMe oor 'n reeks van temperature word vereis om entropie generasie te minimeer. Twee-tenk gesmelte soutstoor kan ook gebruik word in samewerking met kaskade metaal FVM stoor om koste te verminder, maar dit moet ook verder ondersoek word.
99

Contribution au développement et à l’analyse d’une enveloppe de bâtiment multifonctionnelle dans le cadre de l’optimisation du confort dans l’habitat / Development and evaluation of an innovative multifunctional building envelope : thermal energy storage with Phase Change Materials (PCMs)

Bahrar, Myriam 17 January 2018 (has links)
Le secteur du bâtiment recèle un fort potentiel d’amélioration de l'efficacité énergétique et de réduction de l’empreinte écologique. Dans cette optique, l’enveloppe du bâtiment joue un rôle important pour relever le défi de la transition énergétique. En effet, une bonne conception de l’enveloppe contribue efficacement à réduire la consommation d’énergie tout en réduisant les émissions de CO2 associés. Cela s’accompagne notamment d’une démarche de développement de nouveaux matériaux et principes constructifs. Ce projet de thèse s’inscrit dans ce cadre en proposant un nouveau matériau composite, qui porte sur l’association de deux matériaux innovant : composite textile mortier (TRC) et matériaux à changement de phase (MCPs). L’objectif de cette combinaison est de contribuer au développement d’éléments de façades multifonctionnelles permettant d’allier performances énergétiques, mécaniques et environnementales. Le but de notre étude est de caractériser en premier lieu, les propriétés mécaniques et thermiques de ces composites puis, d’évaluer l’impact des MCPs sur le confort thermique intérieur pour différentes configurations. Pour atteindre ces objectifs, nous avons adopté une démarche expérimentale et numérique multi échelle. Une campagne expérimentale à l’échelle du laboratoire et in-situ a été menée. En parallèle, nous avons développé un modèle numérique de paroi multicouche, couplé à un modèle de bâtiment. Enfin, nous avons exploité ce couplage pour réaliser une optimisation multicritère à base d’algorithmes génétiques. / The building sector has a great potential to improve energy efficiency and reduce the greenhouse gas emissions. Improvements to the building envelope and Innovations in building materials have the potential to achieve sustainability within the built environment. This PhD thesis focuses on the development of multifunctional façade elements in order to optimize the building energy consumption while maintaining an optimal indoor human thermal comfort. The proposed solution consist of using passive storage by means of phase change materials associated with alternative construction materials such as textile reinforced concrete (TRC). The aim of the study is to characterize mechanical and thermal properties of TRC composites and to evaluate the effect of PCMs on indoor thermal comfort. To meet these objectives, experimental devices have been set up for the characterization (at the component scale and in situ) of the mechanical and thermal behaviour of different TRC panels. In parallel, we have developed a numerical model for the prediction of wall temperature profiles. Finally, a multi-objective optimization of the façade elements is carried out using genetic algorithms to determine the better combinations able to combine the energy performance with the mechanical performance.
100

Procédé de stockage d'énergie solaire thermique par adsorption pour le chauffage des bâtiments : modélisation et simulation numérique / Numerical and experimental study of a solar assisted zeolite heat storage system for low-energy buildings

Tatsidjodoung, Parfait 26 May 2014 (has links)
Les systèmes de stockage de chaleur par sorption (SSCS) ouvrent de nouvelles perspectives dans l'exploitation de l'énergie solaire pour le chauffage des bâtiments résidentiels. En effet, ces systèmes sont très prometteurs dans la mesure où ils permettent un stockage de chaleur sur de longues périodes (le stockage est réalisé sous forme de potentiel chimique) et offrent des densités énergétiques importantes (jusqu'à 230 kWh/m3 de matériau en moyenne) en comparaison aux systèmes classiques comme le stockage par chaleur sensible (qui, pour le cas de l'eau, dispose d'une densité énergétique moyenne d'environ 81 kWh/m3 de matériau pour une variation de 70°C) et le stockage par chaleur latente (qui atteint des densités énergétiques de 90 kWh/m3 de matériau).La présente thèse vise à étudier les performances d'un système de stockage de chaleur par sorption à base de zéolithe 13X intégré à un bâtiment type basse consommation. Des modèles mathématiques de transferts couplés de masse et de chaleur des différents composants du système sont développés et validés par le biais de l'expérimentation. La simulation numérique dynamique, comme outil de dimensionnement, permet, à partir des résultats d'analyses de sensibilité paramétrique sur les différents composants du système, l'étude de son fonctionnement et les critères de sa faisabilité. / Sorption heat storage systems (SHSS) open new perspectives for solar heating of residential buildings. These systems allow long term heat storage (storage is done in the form of chemical potential) and offer high energy densities (up to 230 kWh/m3 of material on average) compared to conventional heat storage systems such as sensible heat storage (which, for the case of water, has an average energy density of approximately 81 kWh/m3 of material for a temperature change of 70 °C) and latent heat storage (nearly reaching energy densities of 90 kWh/m3 of material on average).This thesis aims to study the performance of a sorption solar heat storage system on zeolite 13X, integrated to low-energy building. Mathematical models of coupled heat and mass transfer of various components of the system are developed and validated through experimentation. Numerical dynamic simulations allow to study the functioning of the SHSS in specific conditions, and its design with the results from the parametric sensitivity analysis on its components.

Page generated in 0.1735 seconds