• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 440
  • 412
  • 48
  • 34
  • 33
  • 27
  • 21
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 13
  • Tagged with
  • 1290
  • 1290
  • 375
  • 369
  • 256
  • 198
  • 158
  • 141
  • 115
  • 109
  • 105
  • 101
  • 96
  • 71
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Evaluation of standard and development of new sperm function tests in selected primate species

Prag, Farren Chelsea January 2017 (has links)
Magister Scientiae - MSc / Male infertility in humans has increased in the last few decades and could be as high as 40%, while up to 50% of these men have ''unexplained'' (idiopathic) infertility. Although newly developed molecular techniques have great value in detecting subtle causes of male infertility, more detailed sperm functional tests are required to identify compromised fertility, especially in a clinical set-up. Since ethical constraints often preclude the pursuit of many basic research questions in humans, non-human primates (NHPs) have been identified as key models in human-related studies. NHPs are often used in studies on male fertility/infertility, IVF or assisted reproductive technology (ART) procedures, male contraception and reproductive toxicology. However, comparing results of NHP and human studies require that techniques used for assessment must be objective, standardized and sensitive to recognize compromised sperm function. The aim of this study was to evaluate standard sperm functional tests and develop new functional tests using NHP sperm, specifically from vervet monkeys (Chlorocebus aethiops), chacma baboons (Papio ursinus) and rhesus monkeys (Macaca mulatta), for application in human and NHP studies and to ultimately develop a basic primate model. The sperm functions investigated included sperm motility, longevity, vitality, DNA integrity, acrosome reaction, and hyperactivation. The sperm functional tests evaluated were: CASA motility analysis; Sperm Longevity test; Eosin-Nigrosin and Hoechst and Propidium Iodide staining, as well as the use of WST-1 cytotoxicity assay for vitality; the TUNEL assay for DNA integrity; Acrosome Intactness Test; and induction of hyperactivation via stimulants. The validity of each test was investigated by inhibiting sperm function through the use of copper sulphate and cadmium chloride. All functional tests were successfully performed across all three species, except the TUNEL assay for DNA integrity, and was further used for validation testing. Validation testing proved that all sperm functional parameters were significantly affected by the highest concentrations of the chemicals (250 µg/ml CuSO4 and 500 µg/ml CdCl2) and if not significant, trends of reduction were seen. The tests employed were therefore sensitive to the inhibitory effect of the metals. By evaluating these established sperm functional tests we found that primates would serve as good models for research study. Furthermore, we optimized and modified techniques for sperm and functional analysis in these three primate species and this study will standardize protocols for use in future studies on male infertility. Additionally, comparing human and NHP sperm function can possibly reveal or explain the high infertility rates in humans.
252

The removal and recovery of toxic and valuable metals from aqueous solutions by the yeast Saccharomyces cerevisiae

Wilhelmi, Brendan Shane January 1998 (has links)
This project considered the use of the yeast Saccharomyces cerevisiae as a biosorbent for the removal and recovery of a range of metals from contaminated waters. S. cerevisiae, as a biosorbent, has the potential to provide a cost effective, selective and highly efficient purification system. Initial studies focused on metal accumulation by an immobilized baker's S. cerevisiae biosorbent. The parameters affecting metal uptake were investigated, these included metal concentration, time and solution pH. Metal uptake was rapid. Gold and cobalt reached saturation within 5 min of contact with the biosorbent in batch reactors. Copper, zinc, nickel, cadmium and chromium reached saturation within 30 min of contact. Metal accumulation was pH dependent and was generally unaffected at a solution pH ≥ 4, and was substantially decreased at pH ≤ 2. The exception was gold which was preferentially accumulated at a solution pH of 2. The immobilized baker's yeast accumulated metals with maximum binding capacities in the order of gold > cadmium > cobalt > zinc > copper > chromium > nickel. A rapid method to assess metal recovery was developed. Bioaccumulated metal was efficiently recovered using dilute mineral acids. Copper recovery of ≥ 80 % was achieved by decreasing the solution pH of the reaction mixture to 2 with the addition of nominal quantities of HCl, H₂SO₄ or RNO₃. Adsorption-desorption over 8 cycles had no apparent adverse effect on metal uptake or recovery in batch reactors. Transmission electron microscopy showed no evidence of damage to cells used in copper adsorption-desorption investigations. Biosorption columns were investigated as bioreactors due to their application potential. The metals investigated were effectively removed from solution. At a saturation threshold, metal uptake declined rapidly. Most metals investigated were desorbed from the columns by eluting with 0.1 M HCl. Initially recoveries of copper, cobalt and cadmium were as high as 100%. Desorbed copper, zinc, cadmium, nickel and cobalt were concentrated in 10 to 15 ml of eluent, representing up to a 40 fold decrease in solution volume. Cadmium, nickel and zinc uptake increased with the second application to the columns. Initial accumulation of gold and chromium was 42.2 μmol/g and 28.6 μmol/g, however, due to the low recoveries of these two metals, a second application was not investigated. Copper was applied to a single column for 8 consecutive adsorption-desorption cycles. Uptake increased from an initial 31.3 μmol/g to 47.8 μmol/g at cycle 7. The potential for selective metal recovery was demonstrated using two biosorption columns in series. Copper was accumulated and recovered most efficiently. Zinc, cobalt and cadmium were displaced to the second column. Copper bound preferentially to zinc at a ratio of 6:1. Copper bound preferentially to cobalt at a ratio of 4:1. Cadmium was only displaced at a ratio of 2:1. The successful transfer of the bioremediation technology from the laboratory to an industrial application has yet to be realized. Bioremediation of a Plaatjiesvlei Black Mountain mine effluent, which contained copper, zinc, lead and iron, was investigated in this project. The removal of the metals was most effective at pH 4. A combined strategy of pH adjustment and bioremediation using immobilized S. cerevisiae decreased the copper concentration by 92.5%, lead was decreased by 90% and zinc was decreased by 60%. Iron was mostly precipitated from solution at pH ≥ 4. An ageing pond at the mine with conditions such as; pH, water volume and metal concentration, which were more conducive to biological treatment was subsequently identified. The investigation indicated a possible application of the biomass as a supplement to chemical remediation. The metal removal capability of a waste brewer's yeast was subsequently investigated. A yeast conditioning step increased metal uptake up to 100% and enhanced reproducibility. Metal removal from solution was rapid and pH dependent. The metals were efficiently removed from solution at pH ≥ 4. Uptake was substantially inhibited at pH ≤ 3. The waste brewer's yeast accumulated metals with maximum binding capacities in the order of copper (25.4 μmol/g) > lead (19.4 μmol/g) > iron (15.6 μmol/g) > zinc (12.5 μmol/g). No correlation between cell physiology and metal uptake was observed. Uptake of the four metals was confirmed by energy dispersive X-ray microanalysis. The interference of lead, zinc and iron on copper uptake by the waste brewer's yeast, and the interference of copper on the uptake of lead, zinc and iron was investigated. Maximum copper uptake was not decreased in the presence of lead. The Bmax remained constant at approximately 25 μmol/g. The dissociation constants increased with increasing lead concentrations. Lead bioaccumulation was significantly decreased in the presence of copper. The type of inhibition was dependent on the initial copper concentrations. Zinc had a slight synergistic effect on copper uptake. The copper Bmax increased from 30.8 μmol/g in a single-ion system to 34.5 μmol/g in the presence of 200 μmol/l of zinc. Zinc uptake was severely inhibited in the presence of copper. The maximum uptake and dissociation constant values were decreased in the presence of copper, which suggested an uncompetitive inhibition. The affinity of copper was substantially higher than zinc. The presence of higher levels of copper than zinc in the yeast cells was confirmed by energy dispersive microanalysis. Copper uptake was decreased in the presence of iron, with the copper Bmax being decreased from 25.4 μmol/g in a single-ion system to 20.1 μmol/g in the presence of 200 μmol/l iron. Iron Bmax values remained constant at 16.0 μmol/g. Combined biosorption and EDXA results suggested the iron bound at a higher affinity than copper to the cell wall. Total copper removal was higher as larger quantities of copper were deposited in the cell cytoplasm. Metal removal from the Plaatjiesvlei effluent by free cell suspensions of the waste brewer's yeast was satisfactory. Copper levels were decreased by 96%, iron by 42%, lead 25% and zinc 2%. Waste brewer's yeast is a cheap source of biomass in South Africa, and could potentially provide the basis for the development of an innovative purification system for metal-contaminated waters.
253

Mosses, epiphytic lichens and tree bark as biomonitors for air pollutants – specifically for heavy metals in regional surveys

Poikolainen, J. (Jarmo) 03 November 2004 (has links)
Abstract The thesis consists of regional forest condition studies, using different biomonitors. Heavy metal deposition was investigated in 1985–2000 on the basis of the heavy metal concentrations (As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, V, Zn) in mosses in Finland. A comparison on the suitability of mosses, epiphytic lichens and pine bark as biomonitors of heavy metals was also carried. Bark was also used to study the dispersal of emissions from the Kola Peninsula into northern Finland. The occurrence of green algae on conifers in Finland was investigated in 1985 and 1995. Regional and temporal differences were found in the heavy metal concentrations of mosses in Finland. The concentrations of most metals were the highest in southern Finland, and they decreased towards the north. Some of the major emission source had a noticeable effect on the Cu, Ni and Cr concentrations of mosses in the surroundings of the emission sources. The Pb, Cd and V concentrations decreased the most during the study period. Mosses, lichens and bark gave a relatively similar result for heavy metal deposition in Finland. However, the comparisons indicated that mosses are better suited as biomonitors for regional surveys than epiphytic lichens, because the regional differences in heavy metal deposition were more readily reflected by concentrations in mosses than in lichens. Bark is relatively unsuitable for regional surveys due to the small range of variation in the concentrations. Emissions from the Kola Peninsula had a clear effect on the sulphur and heavy metal concentrations of pine bark. The concentrations in bark were at very high levels close to the smelters, but they rapidly decreased on moving towards the west. The effects of emissions were still clearly visible in north-eastern Lapland. There was strong increase in the abundance of green algae on conifers in southern and central Finland during the period 1985–1995. The increase is probably due to following factors: climate warming, and an increase in nitrogen and a decrease in sulphur in their habitats. Half of each biomonitor sample collected in the surveys has been stored in the specimen bank at Paljakka. The storage of samples offers advantages for monitoring purposes. The availability of long-term sample series makes it possible to construct retrospective time series of the pollutants. The specimen bank is to be further developed in the future by establishing a reputation as a storage facility for samples related to forest ecosystems.
254

Integrated sub-lethal biomarker response to aqueous copper exposure in the Mozambique tilapia, Oreochromis mossambicus

Hubbard, Monique 11 September 2008 (has links)
Contamination of aquatic ecosystems (for example, dams, lakes, rivers, streams) with heavy metals (according to McDonald and Wood (1993), the metals that are of greatest concern in fresh waters are Hg, Pb, Cd, Cu, Zn, AI, Mn and Cr (approximately in order of decreasing toxicity)) has been receiving increased worldwide attention, and the literature has many publications on the topic. These amplified levels of contamination have become a global problem in both developed and developing countries and the impact of them on aquatic environments is severe due to the inability of water to disperse contaminants. To meet this threat, ecotoxicologists face a difficult challenge on how to assess the long-term impacts of metals which have already been released into the environment and which persist in sediment, water and biota. In recent years, the field of biomarker study has evolved and expanded rapidly to address this void. Biomarkers examine molecular and biochemical responses in exposed individuals in an effort to assess the status of an impacted environment and they can also serve as a basis for a Rapid Risk Assessment of Fish Health (RRAFH) employed by water quality managers. This effort to incorporate biomarkers into RRAFH research will eventually be worthwhile. Moreover, with this multidisciplinary approach, cause-effect relationships may be examined. It was in this context that the present study evaluated three biomarkers (metallothionein (MT), Na+K+ ATPase and heat shock/stress protein 70 (HSP 70)) to determine the integrated physiological responses in Oreochromis mossambicus to one metal (copper (Cu)) at a sub lethal level over the short term (96, 48, 24, 16, 12, 6, 4 and 2 h respectively). The information gained from these tests was valuable in suggesting what the baseline levels of biomarkers in O. mossambicus would be, as studies of metabolic adjustments to stress in fish have been focused on salmonids. The demand for sensitive, specific and rapid biological assays was also addressed by the development of an HSP 70 ELISA. This assay with, with additional refinement, will also prove to be a valuable tool in the management of Cu pollution in this species. Evaluation of the biomarkers in the gills of O. mossambicus indicated that this species has relatively high levels of MT in their gills compared with other species of fish. Exposure to sub lethal Cu concentrations [Cu] caused fluctuating, but not significant, levels in Na+K+ ATPase and HSP 70 during the exposure time, and the actual [Cu] in the gill seems to be the biggest factor when interpreting results. Significant decreases were found in MT levels in the gill tissue at 2 h and 12 h of exposure. HSP 70 results also indicated non-significant decreases to Cu exposure. Data from the gills analysed in the current study suggest that down-regulation in the biomarker response might be a better indicator of Cu exposure or effect in O. mossambicus. These data also suggest that further studies should rethink the amount of Cu that the fish under investigation would find sub-lethal as this metal seems to be very well regulated in this species of fish and seems frequently to non-significantly effect the chosen biomarkers. Evaluation of the biomarkers in the liver of O. mossambicus indicated that MT levels present in the liver most likely fall within the in range of normal baselevels for tilapia living in a Cu-rich environment and that HSP 70 in the liver only responds significantly to increased aqueous [Cu] at 16 h of exposure. This study also confirms current knowledge that the toxicity assessment of any pollutant, including Cu, cannot be exclusively based on one biomarker and that the true value of these biomarkers only becomes evident when they are used not as individual indicators but as integrated responses that influence one another. All these results furnish useful data for future research into the sub lethal effects of a pollutant such as Cu. The next step would be to test the usefulness of these physiological methods for detection of similar responses in natural fish populations inhabiting Cu polluted waters. This will provide a database relating the presence of Cu to biological effects at a molecular level. / Prof. J.H.J. Van Vuuren
255

Recovery of base metals from nitric and sulphiric solutions using carbon nanotubes

Mgwetyana, Unathi 27 January 2014 (has links)
M.Tech. (Extraction Metallurgy) / For many decades, carbon nanotubes (CNTs) have been used as adsorbents for the removal of pollutants from wastewaters because of their unique properties such as inert surface, resistance to acid and base environment, rigidity and strength. Herein is a report of application of functionalised CNTs on the adsorption of metal ions from aqueous solutions and mine leachates. The CNTs were first synthesised in-house, purified, functionalised and characterised with various characterisation techniques: FTIR (Fourier Transform Infrared), SEM (Scanning Electron Microscopy, TEM (Transmission Electron Microscopy), EDS (Energy Dispersive Spectroscopy), Raman Spectroscopy, TGA (Thermal Gravimetric Analysis) and BET (Brunauer-Emmet-Teller). Together, these techniques gave substantiation for structure, surface and chemical modification of the synthesised moieties. After characterisation, the functional groups were attached to the walls of the tubes and this implies successful functionalisation...
256

Polymer-zeolite nanocomposites : preparation, characterization and application in heavy-metal removal

Mthombo, Sydney Thabo 11 September 2013 (has links)
M.Sc. (Chemistry) / Polymer nanocomposites are a new class of composites in which at least one dimension of the particles dispersed in the polymer matrix is in the nanometer range. Recently, different types of zeolite minerals, either natural (Clinoptilolite, chabazite, modernite) or synthetic (A-type, X-type, Y-type) are being employed as particulate fillers into the polymer matrix. Owing to their unique ion exchange phenomenon, zeolites have been widely studied as heavy metal adsorbents, but very few researchers have focused on the sorption of heavy metal ions on zeolite-filled polymer nanocomposites...
257

Metal (Pb, Zn, Cu, Cd, Fe) uptake, tolerance and radial oxygen loss in typical wetland plants

Deng, Hong 01 January 2005 (has links)
No description available.
258

Cellular metabolism in in vitro toxicity and toxicology studies

Yu, Lok Chiu 01 January 2005 (has links)
No description available.
259

Earthworms and mycorrhizae in phytoremediation of Pb/Zn mine tailings : their effects on metal speciation, bioavailability and uptake by Leucaena leucocephala

Ma, Ying 01 January 2003 (has links)
No description available.
260

Risk assessments of human exposure to metal(loid)s via urban dust and airborne particles in Guangzhou, South China

Huang, Minjuan 01 January 2013 (has links)
No description available.

Page generated in 0.0314 seconds