• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 441
  • 412
  • 48
  • 34
  • 33
  • 27
  • 21
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 13
  • Tagged with
  • 1291
  • 1291
  • 375
  • 369
  • 256
  • 198
  • 158
  • 142
  • 115
  • 109
  • 105
  • 101
  • 96
  • 71
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Temporal Variation and Regional Transfer of Heavy Metals in the Pearl (Zhujiang) River, China

Zhen, Gengchong, Li, Ying, Tong, Yindong, Yang, Lei, Zhu, Yan, Zhang, Wei 01 May 2016 (has links)
Heavy metals are highly persistent in water and have a particular significance in ecotoxicology. Heavy metals loading from the Pearl River are likely to cause significant impacts on the environment in the South China Sea and the West Pacific. In this study, using monthly monitoring data from a water quality monitoring campaign during 2006–2012, the temporal variation and spatial transfer of six heavy metals (lead (Pb), copper (Cu), cadmium (Cd), zinc (Zn), arsenic (As), and mercury (Hg)) in the Pearl River were analyzed, and the heavy metal fluxes into the sea were calculated. During this period, the annual heavy metal loads discharged from the Pearl River into the South China Sea were 5.8 (Hg), 471.7 (Pb), 1524.6 (Cu), 3819.6 (Zn), 43.9 (Cd), and 621.9 (As) tons, respectively. The metal fluxes showed a seasonal variation with the maximum fluxes occurring from June to July. There is a close association between metal fluxes and runoff. The analysis of the heavy metal transfer from the upstream to the downstream revealed that the transfer from the upstream accounted for a major portion of the heavy metals in the Pearl River Delta. Therefore, earlier industry relocation efforts in the Pearl River watershed may have limited effect on the water quality improvement in surrounding areas. It is suggested that watershed-based pollution control measures focusing on wastewater discharge in both upstream and downstream areas should be developed and implemented in the future.
442

Heavy metal ion resistance and bioremediation capacities of bacterial strains isolated from an antimony mine

Sekhula, Koena Sinah January 2005 (has links)
Thesis (M.Sc. (Biochemistry)) --University of Limpopo, 2005 / Refer to document
443

Development of electrospun nanofiber composites for point-of-use water treatment

Peter, Katherine T. 01 December 2016 (has links)
A range of chemical pollutants now contaminate drinking water sources and present a public health concern, including organic compounds, such as pharmaceuticals and pesticides, and both metalloids and heavy metals, such as arsenic and lead. Metalloids and heavy metals have been detected in private drinking water wells, which do not fall under federal drinking water regulations, as well as in urban tap water, due to the introduction of contamination to the drinking water distribution system. Further, many so-called “emerging organic contaminants,” which are present in drinking water sources at detectable levels but have unknown long-term health implications, do not fall under federal drinking water regulations. To protect the health of consumers, drinking water treatment at the point-of-use (POU) (i.e., the tap) is essential. Next-generation POU treatment technologies must require minimal energy inputs, be simple enough to permit broad application among different users, and be easily adaptable for removal of a wide range of pollutants. Nanomaterials, such as carbon nanotubes and iron oxide nanoparticles, are ideal candidates for next-generation drinking water treatment, as they exhibit unique, high reactivity and necessitate small treatment units. However, concerns regarding water pressure requirements and nanomaterial release into the treated supply limit their application in traditional reactor designs. To bridge the gap between potential and practical application of nanomaterials, this study utilizes electrospinning to fabricate composite nanofiber filters that effectively deploy nanomaterials in drinking water treatment. In electrospinning, a high voltage draws a polymer precursor solution (which can contain nanomaterial additives, in the case of nanocomposites) from a needle to deposit a non-woven nanofiber filter on a collector surface. Using electrospinning, we develop an optimized, macroporous carbon nanotube-carbon nanofiber composite that utilizes the sorption capacity of embedded carbon nanotubes, and achieves a key balance between material strength and reactivity towards organic pollutants. Additionally, via single-pot syntheses, we develop two optimized polymer-iron oxide composites for removal of heavy metal contamination by inclusion of iron oxide nanoparticles and either cationic or anionic surfactants in the electrospinning precursor solution. In hybrid materials that contain a well-retained quaternary ammonium surfactant (tetrabutylammonium bromide) and iron oxide nanoparticles, ion exchange sites and iron oxide sites are selective for chromate and arsenate removal, respectively. We demonstrated that a sulfonate surfactant, sodium dodecyl sulfate, acted as a removable porogen and an agent for surface segregation of iron oxide nanoparticles, thus enhancing composite performance for removal of lead, copper, and cadmium. Notably, nanoparticles embedded in composites exhibited comparable activity to freely dispersed nanoparticles. Collectively, the composites developed in this work represent a substantial advance towards the overlap of effective nanomaterial immobilization and utilization of nanomaterial reactivity. Outcomes of this work advance current knowledge of nanocomposite fabrication, and contribute to the responsible and effective deployment of nanomaterials in POU drinking water treatment.
444

Removal Efficiencies, Uptake Mechanisms and Competitive Effects of Copper and Zinc in Various Stormwater Filter Media

Heleva-Ponaski, Emily 20 September 2018 (has links)
Polluted stormwater, if not treated, can compromise water quality throughout our hydrologic cycle, adversely affecting aquatic ecosystems. Common stormwater pollutants, copper and zinc, have been identified as primary toxicants in multiple freshwater and marine environments. For small-scale generators, stormwater management can be cumbersome and implementation of common BMPs impractical thus catch basins are popular though not the most environmentally conscious and sustainable option. This study aims to characterize the potential of a mobile media filter operation for the treatment and on-site recycling of catch basin stormwater. The removal capacities of various commercially available filter media (e.g. a common perlite; Earthlite™, a medium largely composed of biochars; and Filter33™, a proprietary porous medium) were measured using binary injection solutions modeled after local catch basin stormwater characteristics. The results of filtration experiments, rapid small-scale column tests (RSSCTs), indicate that the transport of metals in Perlite is primarily impacted by nonspecific sorption whereas in Earthlite™ and Filter33™ both nonspecific and specific sorption are present. For all media and experimentation, there was a consistent preferential uptake of copper such that copper displayed delayed arrival and/or greater removal than zinc. Moreover, the observed snow plow effects and concentration plateaus in Earthlite™ and Filter33™ RSSCTs suggest rate limited ion exchange and specific sorption in addition to ion competition. Earthlite™ exhibited an approach velocity dependent removal efficiency in the RSSCTs and pseudo second order uptake behavior for zinc in kinetic batch experiments. At the lab scale equivalent of the proposed field scale flow rate, Filter33™ displayed the greatest average zinc removal of 8.6 mg/g. In all, this research indicates that test parameters (i.e. pH, competitive ions solutions, empty bed contact time, flow rate) based on the natural environment and field scale operation can greatly impact removal efficiency in filter media.
445

Impact de la pollution sur la qualité du lait de chamelle au Kazakhstan / Impact of pollution on the of camel milk quality in Kazakhstan

Akhmetsadykova, Shynar 20 July 2012 (has links)
Les Kazakhs sont des consommateurs traditionnels de lait d'espèces non-conventionnelles comme la chamelle. Pour autant, les régions d'élevage camelin dans ce pays, bien que basées sur un mode extensif et un accès à des ressources naturelles, n'en sont pas moins fragilisées par les risques de pollution, l'environnement du pays étant affectées par la présence de métaux lourds, pesticides et radionucléides. L'objectif de la thèse a été (a) d'évaluer l'impact de cette pollution sur la qualité du lait de chamelle et du shubat (lait fermenté), et (b) d'évaluer les capacités de détoxification des produits laitiers.Pour aborder la question de l'impact de la pollution, plusieurs niveaux d'analyses ont été mis en œuvre:(i) A l'échelle régionale, des cartes d'indice de pollution ont été établies autour de 13 fermes de zones polluées (Almaty, Sud Kazakhstan, Atyraou et Kyzylorda) afin de comparer le niveau de pollution des différentes matrices (sol, eau, plante) selon la distance aux sources de pollution.(ii) A l'échelle des matrices environnementales (sol, plante, eau), deux métaux lourds majeurs (Pb et Cd) ont été déterminés dans les échantillons de sols (7,76-131,08 ppm et 0,08-0,39 ppm, respectivement), l'eau (Pb entre 5,9-13,6 ppm et Cd 0,05-0,25 ppm), les plantes (0,50-2,30 ppm et >0,05-0,56 ppm, respectivement). Un lien entre indice de pollution et métaux dans les sols a été observé, montrant l'impact de la proximité et de la nature des sources de polluants sur la contamination des sols. On observe également une corrélation étroite entre teneur en Pb et Cd au sein des différentes matrices. Cependant, les teneurs dans le sol sont indépendantes des teneurs dans l'eau ou les plantes. Les teneurs en pesticides dans l'eau sont inférieures à celles des normes internationales. Dans les fourrages, le DDT et ses dérivés ont été plus élevés que dans le sol. Cela signifie que les résidus de pesticides peuvent être également d'origine atmosphérique et donc inhalés par les animaux(iii) Dans le lait et le shubat, la concentration en métaux lourds dans cinq régions (Almaty, Atyraou, Kyzylorda, Taraz et Sud Kazakhstan) a été en moyenne faible en Cu (< 0,05 ppm), normale en Zn (près de 5 ppm) et Cd, mais un peu élevée pour Pb. Nos résultats ont été relativement élevés pour le DDT total dans le lait de toutes les régions sauf Kyzylorda et supérieurs pour le HCH total dans le lait des régions d'Almaty et d'Atyraou.(iv) Les relations entre environnement et lait ont été testées montrant l'absence de lien entre contamination de l'environnement en métaux lourds et celle du lait et shubat. Aucune relation non plus n'a été observée pour les pesticides, à l'exception du lindane et 4,4-DDD.Pour tester l'effet détoxifiant, il a été procédé en deux étapes. D'abord l'isolement et l'identification des souches de bactéries lactiques (BAL) du shubat afin de tester leur capacité à fixer Pb et Cd. Au total, 138 souches ont été isolées à partir de 25 échantillons laitiers. Une étude qualitative pour détecter la capacité des BAL à fixer les métaux lourds a été réalisée. Parmi 118 souches testées, seules 5,1% d'entre elles n'ont poussé ni sur Pb ni sur Cd, 36 % ayant eu la capacité de fixer Pb ou Cd, et 9% les deux. Les 52 souches montrant les meilleurs résultats ont été retenues pour identification par des méthodes moléculaires (rRNA16S). Selon les résultats de séquençage, la plupart de souches étaient de genre Enterococcus et Lactobacillus, secondairement Lactococcus et Leuconostoc.Dans un second temps, un test physiologique (in vivo) a été réalisé sur 80 cobayes divisés en 8 groupes traités par le Pb et des souches de BAL. La quantité de Pb dans les fèces des groupes traités par le lait fermenté ayant contenu ou pas du Pb était relativement élevé par rapport aux groupes témoin et celui recevant de l'eau enrichie de Pb (groupe EauPb). La distribution du Pb dans les organismes de cobayes du groupe EauPb s'est révélée dans l'ordre croissant: rate / The Kazakh people are traditional consumers of milk from non-conventional species like camel. However, the camel-rearing areas in this country, although based on an extensive mode and an access to natural resources, are affected by the risks of pollution, the environment of the country being affected by the presence of heavy metals, pesticides and radionuclides. The objective of the thesis was (a) to evaluate the impact of this pollution on the quality of the camel milk and shubat (fermented milk), and (b) to evaluate the abilitiy of detoxification by the dairy products. To answer to the question of the impact of pollution, several levels of analyses were implemented:(i) At the regional level, maps of pollution index were established around 13 farms from polluted zones (Almaty, Southern Kazakhstan, Atyraou and Kyzylorda) in order to compare the level of pollution of the various matrices (soil, water, plant) according to the distance to the polluting sources.(ii) On environmental matrix level (soil, plant, water), two major heavy metals (Pb and Cd) were determined in the soil (7,76-131,08 ppm and 0,08-0,39 ppm, respectively), water (Pb 5,9-13,6 ppm and Cd 0,05-0,25 ppm), the plants (0,50-2,30 ppm and >0,05-0,56 ppm, respectively) samples. A correlation between pollution index and metals in soils was observed, showing the impact of the proximity and the nature of the polluting sources on the contamination of the soils. A close correlation between Pb and Cd content within the various matrices was also observed. However, the contents in the soil were independent of the contents in water or plants. The contents of pesticides in water were lower than those of the international standards. In fodder, the DDT and its derivatives were higher than in the soil. That means that the pesticides residues can be also of atmospheric origin and thus inhaled by the animals(iii) In milk and shubat, the heavy metal concentration in five areas (Almaty, Atyraou, Kyzylorda, Taraz and Sud Kazakhstan) was on average low in Cu (< 0,05 ppm), normal for Zn (nearly 5 ppm) and Cd, but a little high for Pb. Our results were relatively high for the total DDT in the milk of all the areas except Kyzylorda and superiors for the total HCH in the milk of Almaty and Atyraou areas.(iv) The relations between environment and milk were tested showing the absence of link between environmental contamination of the heavy metals and that of milk and shubat. No relation either was observed for the pesticides, except for lindane and 4,4-DDD.To test the detoxification effect, it was proceeded in two stages: initially the isolation and identification of the strains of lactic bacteria (LAB) of the shubat in order to test their capacity to fix Pb and Cd. On the whole, 138 strains were isolated starting from 25 dairy samples. A qualitative study to detect the capacity of the LAB to fix heavy metals was carried out. Among 118 tested strains, only 5.1% of them pushed neither on Pb nor on Cd, 36% having had the capacity to fix Pb or Cd, and 9% both. The 52 strains showing the best results were retained for identification by molecular methods (rRNA16S). According to results' of sequencing, the majority of strains were of genus Enterococcus and Lactobacillus, secondarily Lactococcus and Leuconostoc. In the second time, a physiological test (in vivo) was carried out on 80 guinea-pigs divided into 8 groups treated by strains of LAB containing or not some Pb. The quantity of Pb in feces of the groups treated by fermented milk having contained or not Pb was relatively high compared to the reference groups and that receiving from the water enriched by Pb (WaterPb group). The distribution of Pb in the organes of guinea-pigs of the WaterPb group appeared in the ascending order: spleen> blood> heart> lungs> liver> kidneys. There was no significant correlation between organs.The results obtained on the identification of the isolated strains, gave the possibilities of studying
446

Effect of Chromium VI on the Production and Behavior of <em>Lytechinus variegatus</em> (Echinodermata: Echiniodea)

Rhora, Jennifer 25 March 2005 (has links)
Small amounts of chromium (VI) are carcinogenic in mammals. Concentrations of Cr in marine algae and seagrasses range from 0.06-7.17 /g DW and 0.1-30.6 g/g DW respectively. To test for an effect of these concentrations, production (change in organic material), righting response, feeding rates, absorption efficiency and fecal production were measured in Lytechinus variegatus from Sarasota fed prepared diets containing 0, 4.1, and 32g Cr/ g DW and individuals from Ft. DeSoto fed diets containing 0, 41 and 82g Cr/ g DW. The urchins were fed for 4-5 weeks, with weekly measurements of their feeding rates, absorption efficiency and fecal production. At the end of the experiment the urchins were righted to note any changes in behavior. Their gonads, gut, lantern and test with spines were weighed and ashed to calculate gonadal and gut indices and inorganic and organic percentage and content. After five weeks individuals in all treatments from experiment one showed no significant results. Urchins in all treatments from experiment two showed a significant decrease Individuals in all treatments had a significant increase in wet (P<0.001) and dry (P=0.005) weights as well as total organic material (P<0.001) in the gut of the urchins recieveing 82µg Cr/ g DW. There was significant decrease in the feeding rate (P<0.001) and absorption efficiency (P<0.001), countered by a significant increase in fecal production. The righting times were significantly different between the 0µg Cr/ g dry weight, 82µg Cr/ g DW and initial (P=0.031), but not the 41µg Cr/ g DW. Chromium in the feed at the concentrations used in this experiment does not affect the production or absorption efficiency of Lytechinus variegatus, but it does affect feeding rates, fecal production and righting response.
447

Cloning and characterization of the genes encoding Oenococcus oeni H+-ATPase and Cu+-ATPase

Fortier, Louis-Charles. January 2000 (has links)
No description available.
448

Recycle of complexing reagents during mechanical pulping

Ager, Patrick January 2003 (has links)
No description available.
449

Heavy Metal Contamination from Landfills in Coastal Marine Sediments: Kiribati and New Zealand.

Redfern, Farran Mack January 2006 (has links)
Landfill leachates are a concern in the Pacific Region where they may contribute contaminants to the coastal marine environment. Poor waste management and pollution of coastal waters are amongst the major environmental problems in Kiribati, particularly in South Tarawa. An investigation of areas adjacent to coastal landfill sites; Betio, Kiribati and Auckland, New Zealand was undertaken. The Kiribati case study investigated metal contamination in marine sediments at an operational landfill while the New Zealand study was adjacent to a coastal landfill decommissioned in the 1970s. Surficial sediments (top 15 cm) were collected along transects. At both the New Zealand and Kiribati sites, 3 transects adjacent to the landfill and 1 control transect were sampled. The sediments were analyzed for particle size distribution, organic matter content, and Cd, As, Cr, Cu, Pb, Hg, Ni and Zn concentrations. The pH was also measured. The Kiribati study site had a groundwater pH of 7.14 - 8.85, and sediment materials were dominated by sand with a low organic matter content (1.60 - 2.21 %). At the Kiribati sites Cd, As, and Ni were below the detection limits. The Cr, Cu, Pb and Zn concentrations were lower at the Kiribati control transect than the landfill transects. Cr level decreased away from the landfill indicating the landfill as a possible source. However, Cu and Zn did not show any distribution pattern suggesting other potential sources (port and shipwrecks) may have contributed to the elevated levels. At the Kiribati landfill and control transects the Cr, As, Cd, Cu, Pb, Ni, and Zn concentration were below the Effects Range-Low (ERL) and the threshold Effects levels (TEL) of the Sediment Quality Guidelines (SQCs) of the National Oceanographic and Atmospheric Administration (NOAA) and the Florida Department of Environmental Protection, indicating no potential adverse ecological effects on the biota. At the Kiribati control site the Cr, As, Cd, Cu, Pb, Ni and Zn concentrations were within the background ranges published for clean reef sediment but the concentration at the landfill transects exceeded the background ranges. The concentration of mercury at both the control and landfill transects in Kiribati exceeded the Effects Range-Median (ERM) and the Probable Effects Level (PEL) of the SQGs indicating potential adverse ecological effects on the local benthic communities. The New Zealand study site sediments had a pH of 6.22 - 7.24, and comprised up to 90 % clay/silt, with an organic matter content of 5 - 22 %. At the New Zealand landfill transects Arsenic concentrations decreased away from the landfill indicating the landfill as a possible source. Other metals such as Cr did not show a pattern of distribution along the transects, or with depth, suggesting that the landfill was not the only source of these metals. There was a weak correlation between organic matter content, particle size distribution, and metal enrichment. At the New Zealand site, there were no marked differences in metal concentrations between the landfill and control transects suggesting the landfill was not the only source of metals and that the wider urban or industrial run-off may have contributed. All the metal concentrations, except Hg and Zn, exceeded the ERL and the TEL values indicating the potential for adverse ecological effects of metals on the benthic communities. At the New Zealand site the Hg and Zn concentrations exceeded both the ERM and PEL of the SQGs and are considered highly contaminated.
450

Acid-base and Cd�⁺ adsorption properties of two thermophilic bacteria

Heinrich, Hannah Tabea Monika, n/a January 2007 (has links)
The release of toxic metal species is of concern due to their detrimental effects on the environment and human health. Industrial effluents are a major source of mobilised metal species. Suitable technologies are needed to sequester toxic metal species at the point of source. Biosorption, which is based on the passive adsorption of contaminants onto biological materials, promises to offer an effective alternative or complementary step to existing treatment methods. However, to date there has been no widespread commercialisation of the technique. This is partly due to an insufficient understanding of the complex underlying mechanisms which makes it difficult to select suitable biomass for specific remediation problems and to predict process performance. This study characterised two gram-positive, thermophilic bacteria, Anoxybacillus flavithermus (BF) and Geobacillus stearothermophilus (BS), harvested at two different growth times, with regard to their acid-base and Cd�⁺ adsorption behaviour. The aim was to investigate the metal cation adsorption properties of thermophilic bacteria which has not been studied previously, and to gain a better understanding of the interactions responsible for bacterial metal cation adsorption. Experimental techniques employed in this study included microscopy to establish cell and cell wall morphology, batch acid-base and Cd�⁺ adsorption experiments to quantify proton active surface functional groups and Cd�⁺ adsorption, electrophoretic mobility measurements to assess the overall surface charge of the bacteria and in situ attenuated total reflection infrared (ATR-IR) spectroscopy to reveal the chemical identities of functional groups. Chemical equilibrium models based on batch acid-base titration and electrophoretic mobility data were developed to quantitatively describe proton active surface functional groups. These groups can also interact with metal cations. It was found that growth time was an important factor in all experiments with the differences between growth times often being more pronounced than the differences between the two bacterial strains. Microscopy revealed a gram-positive cell wall structure with different widths and staining behaviour for exponential phase cells of BF and BS. Stationary / death phase cells showed disintegrating cell walls. Acid-base titrations indicated that all cells possessed buffering capacity over the whole investigated pH range (pH 2 - 10). From electrophoretic mobility measurements, isoelectric points of ~ 3.2 for BF and < 1.8 and ~ 4.2 for exponential and stationary / death phase cells of BS respectively were estimated. Chemical equilibrium models including a Donnan electrostatic model were derived which described both the batch acid-base titration data and the electrophoretic mobility data reasonably well, although a comparison with IR data suggested room for further improvement. In situ ATR-IR spectroscopy of hydrated bacterial cells at various pH values revealed amide and carboxyl groups and a contribution from phosphate / polysaccharide moieties. Group specific interactions with Cd�⁺ were not detected, however, a partially reversible absorbance increase of all peaks suggested conformational changes in the presence of Cd�⁺. BF and BS adsorbed ~ 70 [mu]mol Cd�⁺ (g dry bacterial)⁻� at pH 5 in 0.01 M NaNO₃. Release of major cations occurred concomitantly with Cd�⁺ adsorption. The buffering and Cd�⁺-binding capacities of BF and BS were found to be comparable to those of mesophilic bacteria and ion exchange was identified as an important adsorption mechanism.

Page generated in 0.0471 seconds