• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 83
  • 83
  • 16
  • 16
  • 16
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of an optimal utilization of Ultra-wide band measurements for position purposes

Siripi, Vishnu Vardhan January 2006 (has links)
Ultra wideband (UWB) communication systems refers to systems whose bandwidth is many times greater than the “narrowband” systems (refers to a signal which occupies only small amount of space on the radio spectrum). UWB can be used for indoor, communications for high data rates, or very low data rates for substantial link distances because of the extremely large bandwidth, immune to multi-path fading, penetrations through concrete block or obstacles. UWB can also used for short distance ranging whose applications include asset location in a warehouse, position location for wireless sensor networks, and collision avoidance. In order to verify analytical and simulation results with real-world measurements, the need for experimental UWB systems arises. The Institute of Communications Engineering [IANT] has developed a low-cost experimental UWB positioning system to test UWB based positioning concepts. The mobile devices use the avalanche effect of transistors for simple generation of bi-phase pulses and are TDMA multi-user capable. The receiver is implemented in software and employs coherent cross-correlation with peak detection to localize the mobile unit via Time-Difference-Of-Arrival (TDOA) algorithms. Since the power of a proposed UWB system’s signal spread over a very wide bandwidth, the frequencies allocated to multiple existing narrowband systems may interfere with UWB spectrum. The goal of the filters discussed in this project is to cancel or suppress the interference while not distort the desired signal. To investigate the interference, we develop a algorithm to calculate the interference tones. In this thesis, we assume the interference to be narrowband interference (NBI) modeled as sinusoidal tones with unknown amplitude, frequency and phase. If we known the interference tones then it may be removed using a simple notched filter. Herein, we chose an adaptive filter so that it can adjust the interference tone automatically and cancel. In this thesis I tested adaptive filter technique to cancel interference cancellation (ie) LMS algorithm and Adaptive Noise Cancellation (ANC) technique. In this thesis performance of the both filters are compared.
12

An Interference Cancellation Scheme for Carrier Frequency Offsets Compensation in the Uplink of OFDMA systems

Wang, Sen-Hung 20 August 2006 (has links)
A successive interference cancellation (SIC) structure is proposed for multiuser interference cancellation (MUI) due to carrier frequency offsets (CFOs) in the uplink of orthogonal frequency division multiple access (OFDMA) systems. The proposed architecture adopts a circular convolution to suppress the impacts caused by CFOs. This paper demonstrates that, with 2 iterations, the SIC has better performance than that of the parallel interference cancellation (PIC), but system complexity is only 1/2K, where K is the number of users in the uplink of OFDMA system. This study also shows that system complexity can be significantly reduced if proper approximation is made.
13

Channel Estimation for the Superimposed Training Scheme in OFDM Systems without Cyclic Prefix

Yang, Yi-Syun 11 August 2008 (has links)
Bandwidth efficiency is a critical concern in wireless communications. To fully utilize the available bandwidth, the superimposed training (ST) scheme is adopted in this thesis for orthogonal frequency division multiplexing (OFDM) systems without using the cyclic prefix (CP) and the guard interval (GI). It is shown that the performance of the channel estimation using the ST scheme is the same for both the proposed architecture, denoted as OFDM-ST, and the conventional OFDM system with CP, denoted as CP-OFDM-ST. In addition, since the CP is not added in the proposed system, leading to substantial increase in both the inter-symbol interference (ISI) and the inter-carrier interference (ICI), an interference cancellation scheme is derived. To further improve the performance of channel estimation using ST scheme, the joint ML data detection and channel estimation method is investigated. The simulation results illustrate that the proposed algorithm enhances the systems performance significantly. Finally, it is demonstrated that the proposed structure has a much better effective data rate than the CP-OFDM-ST system.
14

Hardware Prototyping of Two-Way Relay Systems

Wu, Qiong 2012 August 1900 (has links)
In this thesis, I conduct the hardware prototyping of a two-way relay system using the National Instruments FlexRIO hardware platform. First of all, I develop several practical mechanisms to solve the critical synchronization issues of the systems, including Orthogonal Frequency-Division Multiplexing (OFDM) frame synchronization at the receiver, source to source node synchronization, and handshaking between the sources and relay nodes. Those synchronization methods control the behavior of the two source nodes and the relay node, which play critical roles in the two-way relay systems. Secondly, I develop a pilot-based channel estimation scheme and validate it by showing the successful self-interference cancellation for the two-way relay systems. In particular, I experiment the self-interference cancellation technique by using several channel estimation schemes to estimate both source to relay channels and relay to source channels. Moreover, I implement the physical layer of a 5 MHz OFDM scheme for the two-way relay system. Both the transmitter and receiver are designed to mimic the Long Term Evolution (LTE) downlink scenario. The physical layer of the transmitter has been implemented in Field-Programmable Gate Arrays (FPGAs) and executed on the hardware board, which provides high throughput and fundamental building blocks for the two-way relay system. The physical layer of receiver is implemented in the real-time controller, which provides the ?exibility to rapidly recon?gure the system. Finally, I demonstrate that the 5MHz OFDM based two-way relay system can achieve reliable communications, when the channel estimation and system synchronization can be correctly executed.
15

Advanced receivers for wideband CDMA systems

Latva-aho, M. (Matti) 07 September 1998 (has links)
Abstract Advanced receiver structures capable of suppressing multiple-access interference in code-division multiple-access (CDMA) systems operating in frequency-selective fading channels are considered in this thesis. The aim of the thesis is to develop and validate novel receiver concepts suitable for future wideband cellular CDMA systems. Data detection and synchronization both for downlink and uplink receivers are studied. The linear minimum mean squared error (LMMSE) receivers are derived and analyzed in frequency-selective fading channels. Different versions of the LMMSE receivers are shown to be suitable for different data rates. The precombining LMMSE receiver, whichis also suitable for relatively fast fading channels, is shown to improve the performance of the conventional RAKE receivers signicantly in the FRAMES wideband CDMA concept. It is observed that the performance of the conventional RAKE receivers is degraded signicantly with highest data rates due to multiple-access interference (MAI) as well as due to inter-path interference. Based on a general convergence analysis, it is observed that the postcombining LMMSE receivers are mainly suited to the high data rate indoor systems. The blind adaptive LMMSE-RAKE receiverdeveloped for relatively fast fading frequency-selective channels gives superior rate of convergence and bit error rate (BER) performance in comparison to other blind adaptive receivers based on least mean squares algorithms. The minimum variance method based delay estimation in blind adaptive receivers is shown to result in improved delay acquisition performance in comparison to the conventional matched filter and subspace based acquisition schemes. A novel delay tracking algorithm suitable to blind least squares receivers is also proposed. The analysis shows improved tracking performance in comparison to the standard delay-locked loops. Parallel interference cancellation (PIC) receivers are developed for the uplink. Data detection, channel estimation, delay acquisition, delay tracking, inter-cell interference suppression, and array processing in PIC receivers are considered. A multistage data detector with the tentative data decision and the channel estimate feedback from the last stage is developed. Adaptive channel estimation filters are used to improve the channel estimation accuracy. The PIC method is also applied to the timing synchronization of the receiver. It is shown that the PIC based delay acquisition and tracking methods can be used to improve the performance of the conventional synchronization schemes. Although the overall performance of the PIC receiver is relatively good in the single-cell case, its performance is signicantly degraded in a multi-cell environment due to unknown signal components which degrade the MAI estimates and subsequently the cancellation efficiency. The blind receiver concepts developed for the downlink are integrated into the PIC receivers for inter-cell interference suppression. The resulting LMMSE-PIC receiver is capable of suppressing residual interference and results in good BER performance in the presence of unknown signal components.
16

Performance analysis of suboptimal soft decision DS/BPSK receivers in pulsed noise and CW jamming utilizing jammer state information

Juntti, J. (Juhani) 17 June 2004 (has links)
Abstract The problem of receiving direct sequence (DS) spread spectrum, binary phase shift keyed (BPSK) information in pulsed noise and continuous wave (CW) jamming is studied in additive white noise. An automatic gain control is not modelled. The general system theory of receiver analysis is first presented and previous literature is reviewed. The study treats the problem of decision making after matched filter or integrate and dump demodulation. The decision methods have a great effect on system performance with pulsed jamming. The following receivers are compared: hard, soft, quantized soft, signal level based erasure, and chip combiner receivers. The analysis is done using a channel parameter D, and bit error upper bound. Simulations were done in original papers using a convolutionally coded DS/BPSK system. The simulations confirm that analytical results are valid. Final conclusions are based on analytical results. The analysis is done using a Chernoff upper bound and a union bound. The analysis is presented with pulsed noise and CW jamming. The same kinds of methods can also be used to analyse other jamming signals. The receivers are compared under pulsed noise and CW jamming along with white gaussian noise. The results show that noise jamming is more harmful than CW jamming and that a jammer should use a high pulse duty factor. If the jammer cannot optimise a pulse duty factor, a good robust choice is to use continuous time jamming. The best performance was achieved by the use of the chip combiner receiver. Just slightly worse was the quantized soft and signal level based erasure receivers. The hard decision receiver was clearly worse. The soft decision receiver without jammer state information was shown to be the most vulnerable to pulsed jamming. The chip combiner receiver is 3 dB worse than an optimum receiver (the soft decision receiver with perfect channel state information). If a simple implementation is required, the hard decision receiver should be used. If moderate complex implementation is allowed, the quantized soft decision receiver should be used. The signal level based erasure receiver does not give any remarkable improvement, so that it is not worth using, because it is more complex to implement. If receiver complexity is not limiting factor, the chip combiner receiver should be used. Uncoded DS/BPSK systems are vulnerable to jamming and a channel coding is an essential part of antijam communication system. Detecting the jamming and erasing jammed symbols in a channel decoder can remove the effect of pulsed jamming. The realization of erasure receivers is rather easy using current integrated circuit technology.
17

Hybrid beamforming for millimeter wave communications

Zhan, Jinlong 29 April 2022 (has links)
Communications over millimeter wave (mmWave) frequencies is a key component of the fifth generation (5G) cellular networks due to the large bandwidth available at mmWave bands. Thanks to the short wavelength of mmWave bands, large antenna arrays (32 to 256 elements are common) can be mounted at the transceivers. The array sizes are typical of a massive MIMO communication system, which makes fully digital beamforming difficult to implement due to high power consumption and hardware cost. This motivates the development of hybrid beamforming due to its versatile tradeoff between implementation cost (including hardware cost and power consumption) and system performance. However, due to the non-convex constraints on hardware (phase shifters), finding the global optima for hybrid beamforming design is often intractable. In this thesis, we focus on hybrid beamforming design for mmWave cellular communications both narrowband and wideband scenarios are considered. Starting from narrowband SU-MIMO mmWave communications, we propose a Gram-Schmidt orthogonalization (GSO) aided hybrid precoding algorithm to reduce computation complexity. GSO is a recursive process that depends on the order in which the matrix columns are selected. A heuristic solution to the order of column selection is suggested according to the array response vector along which the full digital precoder has the maximum projection. The proposed algorithm, not only constrained to uniform linear arrays (ULAs), can avoid the matrix inversion in designing the digital precoder compared to the orthogonal matching pursuit (OMP) algorithm. For the narrowband MU-MIMO mmWave communications, we propose an interference cancellation (IC) framework on hybrid beamforming design for downlink mmWave multi-user massive MIMO system. Based on the proposed framework, three successive interference cancellation (SIC) aided hybrid beamforming algorithms are proposed to deal with inter-user and intra-user interference. Furthermore, the optimal detection order of data streams is derived according to the post-detection signal-to-interference- plus-noise ratio (SINR). When considering wideband MU-MIMO mmWave communications, how to design a common RF beamformer across all subcarriers becomes the main challenge. Furthermore, the common RF beamformer in wideband channels leads to the need of more effective baseband schemes. By adopting a relaxation of the original mutual information and spectral efficiency maximization problems at the transceiver, we design the radio frequency (RF) precoder and combiner by leveraging the average of the covariance matrices of frequency domain channels, then a SIC aided baseband precoder and combiner are proposed to eliminate inter-user and intra-user interference / Graduate
18

Investigation on the Frequency Domain Channel Equalization and Interference Cancellation for Single Carrier Systems

Chan, Kuei-Cheng 11 August 2008 (has links)
In the single carrier systems with cyclic-prefix (CP), the use of CP does not only eliminate the inter-block interference (IBI), but also convert linear convolution of the transmitted signal with the channel into circular convolution, which leads to the computation complexity of the frequency domain equalization (FDE) at the receiver is reduced. Unfortunately, the use of CP considerably decreases the bandwidth utilization. In order to increase the bandwidth utilization, the single carrier systems with frequency domain equalization (SC-FDE) is investigated. When FDE is used in a single carrier system without CP, the IBI is induced by the modulated symbols and then the bit-error rate (BER) is increased. To reduce the interference and then improve the system performance, a novel interference cancellation scheme is proposed in this thesis. After FDE, it is shown that interference is induced from the right end of a time domain signal block and most of the interference is located at both ends of an equalized time domain signal block. Based on this observation, the modulated symbols which induce the interference are detected according to the maximum-likelihood (ML) principle and then the interference is regenerated and eliminated. For simplifying the computation complexity, we further propose a successive interference cancellation scheme, which is implemented by using the Viterbi algorithm. The simulation results demonstrate that the proposed scheme improves BER performance significantly in SC-FDE systems. In addition, the proposed architecture has comparable BER performance with the SC-CP systems when the multi-path channel is exponentially decayed.
19

High-Quality Detection in Heavy-Traffic Avionic Communication System Using Interference Cancellation Techniques

Nguyen, Anh-Minh Ngoc 21 October 2005 (has links)
This dissertation focuses on quantifying the effects of multi-user co-channel interference for an avionic communication system operating in a heavy-traffic aeronautical mobile environment and proposes advanced interference cancellation techniques to mitigate the interference. The dissertation consists of two parts. The first part of the work investigates the use of a visualization method to quantify and characterize the multi-user co-channel interference (multiple access interference) effects impinging on an avionic communication system. The interference is caused by complex interactions of thousands of RF signals transmitted from thousands of aircraft; each attempts to access a common communication channel, which is governed by a specific channel contention access protocol. The visualization method transforms the co-channel interference, which is specified in terms of signal-overlaps (signal collisions), from a visual representation to a matrix representation for further statistical analysis. It is found that the statistical Poisson and its cumulative distribution provide the best estimates of multi-user co-channel interference. It is shown, using Monte Carlo simulation, that the co-channel interference of a victim aircraft operating in the heavy-traffic environment could result in as high as eight signal-overlaps. This constitutes to approximately 83.4% of success rate in signal detection for the entire three thousand aircraft environment using conventional FSK receiver. One key finding shows that high-quality communications, up to 98.5% success rate, is achievable if only three overlapping signals can be decoded successfully. The interference results found in the first part set the stage for interference cancellation research in the second part. The second part of the work proposes the use of advanced interference cancellation techniques, namely sequential interference cancellation (SIC) and parallel interference cancellation (PIC), as potential solutions to mitigating the interference effects. These techniques can be implemented in radio receivers to perform multi-signal decoding functionality to remove the required interferers (three overlapping signals) so that high-quality communication, as described in the first part, can be achieved. Various performance graphs are shown for B-FSK and B-PSK for both SIC and PIC techniques. One key finding is that the system performance can be improved substantially to an additional 15% in signal reception success rate by using SIC or PIC. This means that critical information transmitted from 450 aircraft (out of approximately three thousand aircraft in the environment) is preserved and successfully decoded. Multi-signal decoding using these interference cancellation receivers comes at a small penalty of 2 - 4.5 dBs in Eb/No when sufficient signal-to-interference (SIR) ratio (7-12 dB) is provided. / Ph. D.
20

Filter Design for Interference Cancellation for Wide and Narrow Band RF Systems

Zargarzadeh, MohammadReza 19 June 2016 (has links)
In radio frequency (RF), filtering is an essential part of RF transceivers. They are employed for different purposes of band selection, channel selection, interference cancellation, image rejection, etc. These are all translated in selecting the wanted signal while mitigating the rest. This can be performed by either selecting the desired frequency range by a band pass filter or rejecting the unwanted part by a band stop filter. Although there has been tremendous effort to design RF tunable filters, there is still lack of designs with frequency and bandwidth software-tuning capability at frequencies above 4 GHz. This prevents the implementation of Software Defined Radios (SDR) where software tuning is a critical part in supporting multiple standards and frequency bands. Designing a tunable integrated filter will not only assist in realization of SDR, but it also causes an enormous shrinkage in the size of the circuit by replacing the current bulky off-chip filters. The main purpose of this research is to design integrated band pass and band stop filters aimed to perform interference cancellation. In order to do so, two systems are proposed for this thesis. The first system is a band pass filter capable of frequency and band with tuning for C band frequency range (4-8 GHz) and is implemented in 0.13 µm BiCMOS technology. Frequency tunability is accomplished by using a variable capacitor (varactor) and bandwidth tuning is carried out by employing a negative transconductance cell to compensate for the loss of the elements. Additional circuitry is added to the band pass filter to enhance the selectivity of the filter. The second system is a band stop filter (notch) with the same capability as the band pass filter in terms of tuning. This system is implemented in C band, similar to its band stop counterpart and is capable of tuning its depth by using a negative transconductance in an LC tank. A negative feedback is added to the circuit to improve the bandwidth. While implemented in the same process as the band pass filter, it only employs CMOS transistors since it is generally more attractive due to its lower cost and scalability. Both of the systems mentioned use a varactor for changing the center frequency which is a nonlinear element. Therefore, the nonlinearity of it is modelled using two different methods of nonlinear feedback and Volterra series in order to gain further understanding of the nonlinear process taking place in the LC tank. After the validation of the models proposed using Cadence Virtuoso simulator, two methods of design and tuning are suggested to improve the linearity of the system. After post layout-extraction, the band pass filter is capable of Q tuning in the range of 3 to 270 and higher. With the noise figure of 10 to 14 dB and input 1-dB compression point as high as 2 dBm, the system shows a reasonably good performance along its operating frequency of 4 to 8 GHz. The band stop filter which is designed in the same frequency band can achieve better than 55 dB of rejection with the noise figure of 6.7 to 8.8 dB and 1-dB compression point of -4 dBm. With the power consumption of 39 to 70 mW, the band stop filter can be used in a low power receiver to suppress unwanted signals. The technique used in the band stop filter can be applied to higher frequency ranges if the circuit is implemented in a more advanced silicon technology. Implementing the mentioned filters in a receiver along with other elements of low noise amplifiers, mixers, etc. would be a major step toward full implementation of SDR systems. Studying the linearity theory of varactors would help future designers identify the sources of nonlinearity and suggest more efficient tuning techniques to improve the linearity of RF electronic systems. / Master of Science

Page generated in 0.0643 seconds