• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 12
  • 10
  • 9
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 134
  • 134
  • 36
  • 23
  • 19
  • 17
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The development and application of two-time-scale turbulence models for non-equilibrium flows

Klein, Tania S. January 2012 (has links)
The reliable prediction of turbulent non-equilibrium flows is of high academic and industrial interest in several engineering fields. Most turbulent flows are often predicted using single-time-scale Reynolds-Averaged-Navier-Stokes (RANS) turbulence models which assume the flows can be modelled through a single time or length scale which is an admittedly incorrect assumption. Therefore they are not expected to capture the lag in the response of the turbulence in non-equilibrium flows. In attempts to improve prediction of these flows, by taking into consideration some features of the turbulent kinetic energy spectrum, the multiple-time-scale models arose. A number of two-scale models have been proposed, but so far their use has been rather limited.This work thus focusses on the development of two-time-scale approaches. Two two-time-scale linear-eddy-viscosity models, referred to as NT1 and NT2 models, have been developed and the initial stages of the development of two-time-scale non-linear-eddy-viscosity models are also reported. The models' coefficients have been determined through asymptotic analysis of decaying grid turbulence, homogeneous shear flows and the flow in a boundary layer in local equilibrium. Three other important features of these models are that there is consistent partition of the large and the small scales for all above limiting cases, model sensitivity to the partition and production rate ratios and sensitivity of the eddy viscosity sensitive to the mean strain rates.The models developed have been tested through computations of a wide range of flows such as homogeneous shear and normally strained flows, fully developed channel flows, zero-pressure-gradient, adverse-pressure-gradient, favourable-pressure-gradient and oscillatory boundary layer flows, fully developed oscillatory and ramp up pipe flows and steady and pulsated backward-facing-step flows.The proposed NT1 and NT2 two-scale models have been shown to perform well in all test cases, being, among the benchmarked models tested, the models which best performed in the wide range of dimensionless shear values of homogeneous shear flows, the only linear-eddy-viscosity models which predicted well the turbulent kinetic energy in the normally strained cases and the only models which showed satisfactory sensitivity in predicting correctly the reattachment point in the unsteady backward facing step cases with different forcing frequencies. Although the development of the two-time-scale non-linear-eddy-viscosity models is still in progress, the interim versions proposed here have resulted in predictions of the Reynolds normal stresses similar to those of much more complex models in all test cases studied and in predictions of the turbulent kinetic energy in normally strained flows which are better than those of the other models tested in this study.
62

Improved Analysis Techniques for Scatterometer Wind Estimation

Schachterle, Gregory Dallin 10 August 2020 (has links)
In this thesis, three improved analysis techniques for scatterometer wind estimation are presented. These techniques build upon previous methods that help validate scatterometer data. This thesis examines the theory connecting the 1D and 2D kinetic energy spectra and uses QuikSCAT data to measure the 2D kinetic energy spectrum of ocean winds. The measured 2D kinetic energy spectrum is compared to the traditional 1D kinetic energy spectrum. The relationship between the 2D kinetic energy spectra and the 1D kinetic energy spectra confirms findings from previous studies that ocean winds modeled in 2D are isotropic and nondivergent. The 1D and 2D kinetic energy spectra also confirm the known conclusion that the zonal and meridional components of ocean winds are uncorrelated. Through simulation, the wind response function (WRF) is calculated for three different QuikSCAT processing algorithms. The WRF quantifies the contribution that the wind at each point of the surface makes to a given wind estimate. The spatial resolution of the different processing algorithms is estimated by their WRFs. The WRFs imply that the spatial resolution of ultrahigh resolution (UHR) processing is finer than the spatial resolution of conventional drop-in-the-bucket (DIB) processing; the spatial resolution of UHR processing is ~5-10 km while the spatial resolution of DIB slice processing is ~12-15 km and the spatial resolution of coarse resolution DIB egg processing is ~30 km. Simulation is used to analyze the effectiveness of various wind retrieval and ambiguity selection algorithms. To assist in the simulation, synthetic wind fields are created through extrapolating the 2D Fourier transform of a numerical weather prediction wind field. These synthetic wind fields are sufficiently realistic to evaluate ambiguity selection algorithms. The simulation employs the synthetic wind fields to compare wind estimation with and without direction interval retrieval (DIR) applied. Both UHR and DIB wind estimation processes are performed in the simulation and UHR winds are shown to resolve finer resolution wind features than DIB winds at the cost of being slightly noisier. DIR added to standard QuikSCAT UHR wind estimation drops the wind direction root-mean-squared error by ~10° to ~24.74° in the swath sweet spot.
63

Simulátor pro ověření funkce bezpečnostních pásů / Simulator for check of seat belts function

Neuwirth, Zdeněk January 2009 (has links)
Thesis is oriented on project construction universal apparatus for introduction and research effects deceleration and impact with possibility setting initial velocity. Basic application proposed test station is crash simulation for diagnostic safety belts. At first there're in work presented physical value that describe action in progress at impact, further safety belts, their testing and test . Considerable volume of work is devoted to project actuation, system obstruction kinetic energy and basic construction. Subsequently is presented proposed construction and performed strenght calculation. In the end there are summarized basic characteristics proposed construction, short financial opinion, process of installation and safety rules for using this equipment.
64

Quantifying the Impact of Traffic-Related and Driver-Related Factors on Vehicle Fuel Consumption and Emissions

Ding, Yonglian 02 June 2000 (has links)
The transportation sector is the dominant source of U.S. fuel consumption and emissions. Specifically, highway travel accounts for nearly 75 percent of total transportation energy use and slightly more than 33 percent of national emissions of EPA's six Criteria pollutants. Enactment of the Clean Air Act Amendment of 1990 (CAAA) and the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) have changed the ways that most states and local governments deal with transportation problems. Transportation planning is geared to improve air quality as well as mobility. It is required that each transportation activity be analyzed in advance using the most recent mobile emission estimate model to ensure not to violate the Conformity Regulation. Several types of energy and emission models have been developed to capture the impact of a number of factors on vehicle fuel consumption and emissions. Specifically, the current state-of-practice in emission modeling (i.e. Mobile5 and EMFAC7) uses the average speed as a single explanatory variable. However, up to date there has not been a systematic attempt to quantify the impact of various travel and driver-related factors on vehicle fuel consumption and emissions. This thesis first systematically quantifies the impact of various travel-related and driver-related factors on vehicle fuel consumption and emissions. The analysis indicates that vehicle fuel consumption and emission rates increase considerably as the number of vehicle stops increases especially at high cruise speed. However, vehicle fuel consumption is more sensitive to the cruise speed level than to vehicle stops. The aggressiveness of a vehicle stop, which represents a vehicle's acceleration and deceleration level, does have an impact on vehicle fuel consumption and emissions. Specifically, the HC and CO emission rates are highly sensitive to the level of acceleration when compared to cruise speed in the range of 0 to 120 km/h. The impact of the deceleration level on all MOEs is relatively small. At high speeds the introduction of vehicle stops that involve extremely mild acceleration levels can actually reduce vehicle emission rates. Consequently, the thesis demonstrated that the use of average speed as a sole explanatory variable is inadequate for estimating vehicle fuel consumption and emissions, and the addition of speed variability as an explanatory variable results in better models. Second, the thesis identifies a number of critical variables as potential explanatory variables for estimating vehicle fuel consumption and emission rates. These explanatory variables include the average speed, the speed variance, the number of vehicle stops, the acceleration noise associated with positive acceleration and negative acceleration noise, the kinetic energy, and the power exerted. Statistical models are developed using these critical variables. The statistical models predict the vehicle fuel consumption rate and emission rates of HC, CO, and NOx (per unit of distance) within an accuracy of 88%-96% when compared to instantaneous microscopic models (Ahn and Rakha, 1999), and predict emission rates of HC, CO, and NOx within 95 percentile confidence limits of chassis dynamometer tests conducted by EPA. Comparing with the current state-of-practice, the proposed statistical models provide better estimates for vehicle fuel consumption and emissions because speed variances about the average speed along a trip are considered in these models. On the other hand, the statistical models only require several aggregate trip variables as input while generating reasonable estimates that are consistent with microscopic model estimates. Therefore, these models could be used with transportation planning models for conformity analysis. / Master of Science
65

Study of High-speed Subsonic Jets using Proper Orthogonal Decomposition

Malla, Bhupatindra January 2012 (has links)
No description available.
66

Surface Discharges of Buoyant Jets in Crossflows

Gharavi, Amir 15 December 2022 (has links)
Understanding the physics of mixing for two fluids is a complicated problem and has always been an interesting phenomenon to study. Surface discharge is the oldest, least expensive and simplest way of discharging industrial or domestic wastewater into rivers and estuaries. Because of the lower degree of dilution in surface discharges, critical conditions are more likely to occur. Having a better understanding of the mixing phenomenon in these cases will help to predict the environmental effects more accurately. In this study, surface discharges of jets into waterbodies with or without crossflows were investigated numerically and experimentally. Three-dimensional (3-D) Computational Fluid Dynamics (CFD) models were developed for studying the surface discharge of jets into water bodies using different turbulence models. Reynolds stress turbulence models and spatially filtered Large Eddy Simulation (LES) were used in the numerical models. The effects of inclusion of free surface water in the CFD models on the performance of the numerical model results were investigated. Numerical model results were compared with the experimental data in the literature as well as the experimental works performed in this study. Experimental works for buoyant and non-buoyant surface discharge of jets into crossflow and stagnant water were conducted in this study. A new setup was designed and built in the Civil Engineering Hydraulics Laboratory at the University of Ottawa to perform the desired experiments. Stereoscopic Particle Image Velocimetry (Stereo-PIV) was used to measure the instantaneous spatial and temporal 3-D velocity distribution on several planes of measurement downstream of the jet with the frequency of 40 Hz. Averaged 3-D velocity distribution was extracted on different planes of measurement to show the transformation of the velocity vectors from a “jet-like” to a “plume-like” flow regime. Averaged 3-D velocity distribution and streamlines illustrated the flow transformation of the surface jets. Experimental results detected the formation and evolution of vortices in the surface jet’s flow structure over the measurement zone. Additional turbulent flow characteristics such as the turbulent kinetic energy (k), turbulent kinetic energy dissipation rate (ϵ), and turbulent eddy viscosity (υt) were calculated using the measured time history of the 3-D velocity field.
67

Modeling optical turbulence with COAMPS during two observation periods at Vandenberg AFB

Horne, Jimmy D., Jr. 03 1900 (has links)
Approved for public release, distribution is unlimited / The objective of this thesis is to investigate the forecastability of optical turbulence using the U.S. Navy's Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS). First, a detailed synoptic study was performed over the Eastern Pacific region for observation periods in October 2001 and March 2002 to focus on mesoscale features affecting Vandenberg AFB. Second, a modified version of COAMPS version 2.0.16 model output was evaluated to ensure reasonable modeling of the mesoscale. Next, temperature and dewpoint temperature vertical profiles of COAMPS, modified with the Turbulent Kinetic Energy (TKE) Method, were compared with balloon-launched rawinsondes, initially, then with higher resolution thermosondes. Optical turbulence parameters were then calculated from the data and a comparison between synthetic profiles and thermosonde-derived profiles were qualitatively and quantitatively studied. Then the vertical resolution of the model was increased for selected forecasts to determine the potential for forecast improvement. / Lieutenant Commander, United States Navy
68

Dissociation dynamics of diatomic molecules in intense fields

Magrakvelidze, Maia January 1900 (has links)
Doctor of Philosophy / Department of Physics / Uwe Thumm / We study the dynamics of diatomic molecules (dimers) in intense IR and XUV laser fields theoretically and compare the results with measured data in collaboration with different experimental groups worldwide. The first three chapters of the thesis cover the introduction and the background on solving time-independent and time-dependent Schrödinger equation. The numerical results in this thesis are presented in four chapters, three of which are focused on diatomic molecules in IR fields. The last one concentrates on diatomic molecules in XUV pulses. The study of nuclear dynamics of H[subscript]2 or D[subscript]2 molecules in IR pulses is given in Chapter 4. First, we investigate the optimal laser parameters for observing field-induced bond softening and bond hardening in D[subscript]2[superscript]+. Next, the nuclear dynamics of H[subscript]2[superscript]+ molecular ions in intense laser fields are investigated by analyzing their fragment kinetic-energy release (KER) spectra as a function of the pump-probe delay τ. Lastly, the electron localization is studied for long circularly polarized laser pulses. Chapter 5 covers the dissociation dynamics of O[subscript]2[superscript]+ in an IR laser field. The fragment KER spectra are analyzed as a function of the pump-probe delay τ. Within the Born-Oppenheimer approximation, we calculate ab-initio adiabatic potential-energy curves and their electric dipole couplings, using the quantum chemistry code GAMESS. In Chapter 6, the dissociation dynamics of the noble gas dimer ions He[subscript]2[superscript]+, Ne[subscript]2[superscript]+, Ar[subscript]2[superscript]+, Kr[subscript]2[superscript]+, and Xe[subscript]2[superscript]+ is investigated in ultrashort pump and probe laser pulses of different wavelengths. We observe a striking ‘‘delay gap’’ in the pump-probe-delay-dependent KER spectrum only if the probe-pulse wavelength exceeds the pump-pulse wavelength. Comparing pump-probe-pulse-delay dependent KER spectra for different noble gas dimer cations, we quantitatively discuss quantum-mechanical versus classical aspects of the nuclear vibrational motion as a function of the nuclear mass. Chapter 7 focuses on diatomic molecules in XUV laser pulses. We trace the femtosecond nuclear-wave-packet dynamics in ionic states of oxygen and nitrogen diatomic molecules by comparing measured kinetic-energy-release spectra with classical and quantum-mechanical simulations. Experiments were done at the free-electron laser in Hamburg (FLASH) using 38-eV XUV-pump–XUV-probe. The summary and outlook of the work is discussed in Chapter 8.
69

Prévision de la transition bypass à l’aide d’un modèle à énergie cinétique laminaire basé sur la dynamique des modes de Klebanoff / Development of a Klebanoff-mode-based kinetic energy model for bypass transition prediction

Jecker, Loïc 15 November 2018 (has links)
Le passage du régime laminaire au régime turbulent s’accompagne d’importantes modifications des propriétés physiques de l’écoulement. Une prévision précise du point du début de la transition laminaire/turbulent revêt donc une importance considérable dans de nombreux domaines pratiques. Lorsque l’intensité des perturbations extérieures est significative, c'est-à-dire dans le cas de couches limites se développant sur une paroi présentant des rugosités ou soumises à une forte turbulence résiduelle (sillage impactant), les mécanismes de formation et d’amplification des instabilités sont profondément modifiés. Ces perturbations sont les modes de Klebanoff (également appelés stries) qui s’amplifient et déclenchent la transition, qualifiée dans ce cas de Bypass. Ces stries sont très énergétiques, caractérisées par des fluctuations de vitesse très importantes (de l’ordre de 10% de la vitesse extérieure), alors que la couche limite conserve son caractère laminaire. La thèse proposée concerne la modélisation de ces stries via la résolution d’une équation de transport pour l’énergie cinétique dite laminaire. Dans un premier temps, le travail du candidat portera sur la modélisation des termes de production et de dissipation de l’énergie cinétique laminaire. Ceux-ci sont liés au processus de réceptivité de la couche limite vis-à-vis des perturbations extérieures et à la dynamique des modes de Klebanoff dans la zone laminaire. Pour ce faire, la thèse s’appuiera sur des études réalisées depuis plusieurs années au sein de l’unité ITAC sur la théorie des perturbations optimales ainsi que sur les travaux numériques et expérimentaux prévus dans le cadre d’un projet de recherche interne Onera. Classiquement cette équation de transport est couplée avec celles correspondant à l’énergie cinétique turbulente et à la dissipation, le mécanisme d’échange entre les énergies cinétiques laminaire et turbulente devra être soigneusement étudié : ce dernier pilote la transition vers la turbulence. Une attention particulière sera portée aux couches limites décollées et plus précisément à la prise en compte de la transition dans ces bulbes. Cette nouvelle modélisation innovante permettra l’amélioration d’une première approche pour le calcul de la transition bypass dans le solveur elsA, développé à l’Onera, et constituera une étape importante vers la mise en place de techniques de prévision de la transition pratiques et performantes. / This work aims to develop a new bypass-transition prediction model based on the Klebanoff modes dynamics. To represent these mode dynamics the Laminar Kinetic Energy (LKE) concept has been chosen, in order to model these mode energy with a new variable. A new deffinition is given to the LKE and a transport equation consequently derived to describe the Klebanoff modes growth and destabilisation. This equation is incorporated in a k-omega turbulence model as done by Walters & Cokljat, to give a three-equation kL-kT-omega formulation. This new model is written in a Reynolds-averaged Navier-Stokes (RANS) pattern and only uses local variables, it thus can be used in an industrial context.
70

Friction-Induced Vibrations as a result of system response and contact dynamics : A newer friction law for broadband contact excitation / Vibrations induites par friction dues à la réponse du système et à la dynamique de contact : Une nouvelle loi de friction pour l'excitation de contact à large bande

Giovanna, Lacerra 18 December 2017 (has links)
Les Vibrations Induites par Frottement (FIV) sont un phénomène complexe qui surgit chaque fois deux surfaces subissent un glissement relatif. Pendant les dernières décennies, une quantité significative de œuvres expérimentales et numériques a traité des Vibrations Induites par Frottement, tandis que la simulation de l'excitation dynamique de contacts frictionnels a été toujours un vrai défi dans beaucoup de domaines de recherche industrielles. Dans ce cadre de recherche, ce travail est adressé à l'analyse des Vibrations Induites par Frottement, en développant des analyses en même temps expérimentales et numériques ; on propose une nouvelle approche numérique pour reproduire l'excitation dynamique locale du contact et son effet sur la réponse vibrationnel du système, sans augmentation significative des coûts de calcul. Le système mécanique, l'objet de l'analyse, est composé par deux poutres en acier en contact frictionnel dans un mouvement relatif ; la dynamique simple du système tient compte de la distinction entre la réponse de dynamique du système et l'excitation à haut débit venant du contact. Une campagne expérimentale paramétrique a été conduite pour analyser les effets de trois paramètres de contact principaux (la vitesse de glissement, la charge normale et la rugosité superficielle) sur la réponse du système vibrationnel, c'est-à-dire sur les vibrations induites. En parallèle, un modèle numérique a été mis en œuvre pour reproduire l'excitation dynamique locale du contact et son effet sur la réponse vibrationnel du système. Une nouvelle loi de friction a été présentée dans le modèle, proposant l'utilisation d'un terme provoquant une perturbation dans le coefficient de frottement pour simuler les effets de l'excitation au contact. Les inclusions de l'excitation dynamique locale, en raison des phénomènes de contact, par le terme de perturbation du coefficient de frottement, permettent de reproduire correctement les Vibrations Induites par Frottement sans présenter une représentation de la topographie superficielle réelle, qui a besoin d'un grand nombre d'éléments, économisant donc le temps de calcul. Des signaux différents pour le terme provoquant la perturbation ont été testés pour simuler correctement les vibrations mesurées. L'évolution du terme provoquant la perturbation récupérée par une méthode inverse a surligné les contributions spectrales différentes de l'excitation locale du contact. La comparaison entre les Vibrations Induites par Frottement mesurées et ceux simulés numériquement a montré une bonne corrélation, validant la loi de frottement proposée. Finalement, l'effet d'un changement de rugosité e de vitesse de glissement a été aussi simulé numériquement et corrélé avec les résultats expérimentaux. / Friction-Induced Vibrations (FIV) are a complex phenomenon which arises each time two surfaces undergo relative sliding. During the last decades, a significant amount of experimental and numerical works dealt with Friction-Induced Vibrations, while the simulation of the dynamic excitation from frictional contacts has always been a real challenge to face in many industrial research areas. In this research framework, this work is addressed to the investigation of the Friction-Induced Vibrations, carrying on at the same time experimental and numerical analyses; a new numerical approach is proposed to reproduce the local dynamic excitation from the contact and its effect on the vibrational response of the system, without significant increase of the computational time costs. The mechanical system, object of the investigation, is composed by two steel beams in frictional contact during relative motion; the simple dynamics of the system allows for distinguishing between the dynamics response of the system and the broadband excitation coming from the contact. A parametrical experimental campaign has been conducted to analyse the effects of three main contact parameters (the relative sliding velocity, the normal load and the surface roughness) on the system vibrational response, i.e. on the induced vibrations. In parallel, a numerical model has been implemented to reproduce the local dynamic excitation from the contact and its effect on the vibrational response of the system. A new friction law has been introduced in the model, proposing the use of a perturbative term in the friction coefficient in order to simulate the effects of the contact excitation. The inclusions of the local dynamic excitation, due to the contact phenomena, by the perturbation term of the friction coefficient allows to correctly reproduce the Friction-Induced Vibrations without introducing a representation of the real surface topography, which usually needs a large number of elements, saving then computational time. Different signals for the perturbative term have been tested to simulate correctly the measured vibrations. The evolution of the perturbative term recovered by an inverse method allowed for highlighting the different spectral contributions of the local excitation coming from the contact. The comparison between the measured Friction-Induced Vibrations and the ones simulated numerically showed good correlation, validating the proposed friction law. Finally, the effect in a change of the sliding velocity and surface roughness have been simulated numerically too and correlated with experimental results.

Page generated in 0.0488 seconds