• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 28
  • 11
  • 10
  • 4
  • 3
  • 1
  • Tagged with
  • 133
  • 40
  • 30
  • 23
  • 21
  • 19
  • 17
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Size of FRP laminates to strengthen reinforced concrete sections in flexure

Ashour, Ashraf F. January 2002 (has links)
This paper presents an analytical method for estimating the flexural strength of reinforced concrete (RC) beams strengthened with externally bonded fibre-reinforced polymer (FRP) laminates. The method is developed from the strain compatibility and equilibrium of forces. Based on the size of external FRP laminates, several flexural failure modes may be identified, namely tensile rupture of FRP laminates and concrete crushing before or after yielding of internal steel reinforcement. Upper and lower limits to the size of FRP laminates used are suggested to maintain ductile behaviour of strengthened RC sections. Comparisons between the flexural strength obtained from the current method and from experiments show good agreement. Design equations for calculating the size of FRP laminates externally bonded to RC sections to enhance their flexural strength are proposed.
32

Deformations of In-plane Loaded Unsymmetrically Laminated Composite Plates

Majeed, Majed A. 03 March 2005 (has links)
This study focuses on the response of flat unsymmetric laminates to an inplane compressive loading that for symmetric laminates are of sufficient magnitude to cause bifurcation buckling, postbuckling, and secondary buckling behavior. In particular, the purpose of this study is to investigate whether or not the concept of bifurcation buckling is applicable to unsymmetric laminates. Past work by other researchers has suggested that such a concept is applicable for certain boundary conditions. The study also has as an objective the determination of the response of flat unsymmetric laminates if bifurcation buckling does not occur. The finite-element program ABAQUS is used to obtain results, and a portion of the study is devoted to becoming familiar with the way ABAQUS handles such highly geometrically nonlinear problems, particularly for composite materials and particularly when instabilities and dynamic behavior are involved. Familiarity with the problem, in general, and with the use of ABAQUS, in particular, is partially gained by considering semi-infinite unsymmetrically laminated cross- and angle-ply plates, a one-dimensional problem that can be solve in closed form and with ABAQUS by making the appropriate approximations for the infinite geometry. In this portion of the study it is found that semi-infinite cross-ply laminates with clamped boundary conditions and semi-infinite angle-ply plates with simple-support boundary conditions remain flat under a compressive load until the load magnitude reaches a certain level, at which time the out-of-plane deflection become indeterminate, essentially an eigenvalue problem as encountered with classic bifurcation buckling analyses. Obviously, a linear analysis of such problems would not reveal this behavior and, in fact, there are other revealed significant differences between the predictions of linear and nonlinear analyses. Transversely-loaded and inplane-loaded finite isotropic plates are studied by way of semi-closed form Rayleigh-Ritz-based solutions and ABAQUS in a step to approaching the problem with unsymmetric laminates. A method to investigate the unloading behavior of postbuckled finite isotropic plates is developed that reveal multiple plate configurations in the postbuckled region of the response, and this method is then extended to the study of finite inplane-loaded unsymmetric laminates. To that end, two specific laminates, a symmetric and an unsymmetric cross-ply laminates, and a variety of boundary conditions are used to study the response of inplane-loaded unsymmetric laminates. The symmetric laminate is included to provide a familiar baseline case and a means of comparison. Plates with all four edges clamped and a variety of inplane boundary conditions are studied. Of course the symmetric cross-ply laminate exhibits bifurcation behavior, and when the tangential displacement on the loaded edges and the normal displacement on the unloaded edges are restrained, secondary buckling behavior occurs. For the unsymmetric cross-ply laminate, bifurcation buckling behavior does not occur unless the tangential displacement on the loaded edges and the normal displacement on the unloaded edges are restrained, or the tangential displacement on the loaded edges and the normal displacement on the unloaded edges are free. If either of these conditions are not satisfied, the unsymmetric cross-ply laminate exhibits what could be termed 'near-bifurcation' behavior. In all cases rather complex behavior occurs for high levels of inplane load, including asymmetric postbuckling and secondary buckling behavior. For clamped loaded edges and simply-supported unloaded edges, bifurcation buckling behavior does not occur unless the tangential displacement on the loaded edges and the normal displacement on the unloaded edges are restrained. For this case, rather unusual asymmetric bifurcation and associated limit point behavior occur, as well as secondary buckling. This is a very interesting boundary condition case and is studied further for other unsymmetric cross-ply laminates, including the use of a Rayleigh-Ritz-based solution in attempt to quantify the problem parameters responsible for the asymmetric response. The overall results of the study have led to an increased understanding of the role of laminate asymmetry and boundary conditions on the potential for bifurcation behavior, on the response of the laminate for loads beyond that level. / Ph. D.
33

Characterisation of low velocity impact response in composite laminates

Shen, Zeng January 2015 (has links)
A major concern affecting the efficient use of composite laminates in aerospace industry is the lack of understanding of the effect of low-velocity impact (LVI) damage on the structural integrity. This project aims to develop further knowledge of the response and damage mechanisms of composite laminates under LVI, and to explore the feasibility of assessing the internal impact damage with a visually inspectable parameter. The response and damage mechanisms of composite laminates under LVI have been investigated experimentally and numerically in this project. Various parameters including the laminates thickness, lay-up configuration, repeated impact, and curing temperature have been examined. The concept and the phenomena of delamination threshold load (DTL) have been assessed in details. It was found that DTL exists for composite laminates, but the determination of the DTL value is not straightforward. There is a suitable value of range between the impact energy and the laminates stiffness/thickness, if the sudden load drop phenomenon in the impact force history is used to detect the DTL value. It is suggested that the potential menace of the delamination initiation may be overestimated. The composite laminates tested in this project demonstrate good damage tolerance capacity due to the additional energy absorption mechanism following the delamination initiation. As a result, the current design philosophy for laminated composite structure might be too conservative and should be reassessed to improve the efficiency further. To explore the feasibility of linking the internal damage to a visually inspectable parameter, quasi-static indentation (QSI) tests have been carried out. The dent depth, as a visually inspectable parameter, has been carefully monitored and assessed in relation to the damage status of the composite laminates. It is proposed that the damage process of composite laminates can be divided into different phases based on the difference in the increasing rate of dent depth. Moreover, the internal damage has been examined under the optical microscope (OM) and the scanning electron microscope (SEM). Residual compressive strength of the damaged specimen has been measured using the compression-after-impact (CAI) test. The results further confirm the findings with regard to the overestimated potential menace of the delamination initiation and the proposed damage process assumption. The proposed damage process assumption has great potential to improve the efficiency and accuracy of both the analytical prediction and the structural health monitoring for damages in composite laminates under low-velocity impact.
34

Investigation of Microcracking and Damage Propagation in Cross-Ply Composite Laminates

Hottengada, Babruvahan 22 May 2006 (has links)
The present study investigates microcracking and damage progression in IM7/977-2, IM7/5555, and IM7/5276-1 [0/90/90/0] laminates. For each material system, seven to eight small coupons were axially loaded in a tensile substage. At increments of around 50 MPa the surfaces of the specimens were inspected via optical microscopy so that a history of microcracking damage as a function of applied loading could be charted. In the IM7/977-2 laminates microcracks were found to initiate on average at around 1050MPa; microcracking initiation for the other two systems was around 850 to 900 MPa. Also, the IM7/977-2 system displayed a steeper increase in crack density as a function of applied loading than the other two systems. The IM7/5555 system was the only system that achieved a microcracking saturation density; the saturation density was found to be around 17 cracks per centimeter. While the IM7/977-2 and IM7/5276-1 systems typically broke into two pieces at failure, the IM7/5555 specimens shattered into pieces. In addition, delaminations were observed in a majority of the IM7/5555 specimens at loadings 250MPa under the failure loads.
35

Quasi-static and fatigue behaviour of composite bolted joints

Starikov, Roman January 2001 (has links)
No description available.
36

Effects of Curing Agents and Drilling Methods on CAF Formation in Halogen-Free Laminates

Chan, Lok Si January 2012 (has links)
Increasing demands for more reliability and functionalities in electronic devices have pushed the electronics industry to adopt newly developed materials and reduce interconnect sizes and spacing. These adaptations have led to concerns of reliability failures caused by conductive anodic filament formation (CAF). CAF is a conductive copper-containing salt that forms via an electrochemical process. It is initiated at the anode and grows along the epoxy/glass interface to the cathode, and once CAF reaches the cathode a short circuit will occur. The objective of this research is to evaluate and compare the effects of curing agents (DICY vs. phenolic-cured epoxy) and drilling methods (laser vs. mechanical drilling) on CAF formation using an insulation resistance test at 85 ºC, relative humidity of 85%, and a voltage gradient of 0.4V/µm. Time-to-failure for DICY-cured and phenolic-cured epoxy with laser drilled microvias and mechanically drilled vias were determined using the insulation resistance test. The failed coupons were cross-sectioned and examined using a Scanning Electron Microscope equipped with Energy-dispersive X-ray spectroscopy to verify the existence of CAF. Weibull analysis was used to compare the reliability and identify the failure modes of the failed coupons. Test results show that DICY-cured epoxy is a better CAF resistant material than phenolic-cured epoxy. It is believed that the brittleness of phenolic-cured material might enhance the damage to the epoxy/glass fiber interface during drilling; and hence, facilitate subsequent CAF formation. The study also shows that laser drilled microvias are less prone to CAF formation than mechanically drilled vias, because there is less mechanical damage and lower glass fiber content. Finally, using Weibull analysis, it is determined that laser drilled microvias experienced infant-mortality failure, whereas mechanically drilled vias exhibited a wear-out type failure.
37

Tensile and Fatigue Responses of Ti/APC-2 Nanocomposite Laminates after Low-Velocity Impact

Chen, Jin-Guan 29 June 2012 (has links)
The aim of this thesis is to investigate Ti/APC-2 nanocomposite laminates mechanical properties after low velocity impact. The finite element analysis with software ANSYS/LS-DYNA is used to analyze the size of damage and plastic zone and internal energy of laminates during low velocity impact. Finally, the numerical results and experimental data are in good agreement. The work can be divided into two parts: the first is to fabricate the hybrid composite laminates and place the samples on the floor, subjected to the free drop of a rigid steel ball of 1m and 2m high. Then, the samples after impact were due to static tensile and fatigue tests to obtain mechanical properties. Using the optical microscopy the impact defects of laminate surface were measured. The second, ANSYS/LS-DYNA was used to simulate a laminate impacted by a steel ball. The energy change of steel ball impact and internal energy of laminates during impact were also discussed. From the experimental data, the mechanical properties, such as ultimate strength and stiffness, of virgin samples are better than those of impacted samples due to free drop. In addition, no matter the laminates were added nanoparticles SiO2 or not, the strength of laminates reduces after impact, however, the fatigue resistance of impacted samples does not lose much. Compare with the data of penetration depth and plastic zone due to free drop. The errors of numerical results are 5.4%~12.4% for the penetration depth and the errors 5.21%~8.98% for plastic zone respectively. That is acceptable. The numerical method ology provides a reference to realize the energy change in laminates after impact. Also, from the experimental measurement it is obvious to see damage area after impact and the mechanical properties do not reduce significantly due to low velocity impact generally in Ti/APC-2 composite laminates.
38

The Experimental Investingation of Residual Strength and Stiffness in Carbon/PEEK APC-2 Composite Laminates

Wu, Chang-He 27 June 2001 (has links)
ABSTRACT AS-4 carbon fibers reinforced polyetheretherketone (PEEK) composite materials have been widely used in aerospace industry because of longer fatigue life, high specific stiffness and strength. The thesis is aimed to investigate the residual strength, residual stiffness and mechanical properties of thermoplastic AS-4/PEEK composite laminates subjected to tension-tension (T-T) cyclic loading at room temperature. We adopt modified diaphragm forming method by controlling temperature, pressure, vacuum and time conditions according to the obtained beast curing process to form composite laminates of low crystallinity, transcrystallinity and good fiber / matrix interfaces. Two common type of laminates are used, such as cross-ply [0/90]4S and quasi-isotropic [0/+45/90/-45]2S. Static tension test is performed to measure the elastic modulus and ultimate strength. And T-T fatigue test is conducted with maximum stress of 60% and 80% ultimate strength to find the residual strength and stiffness. Then, through the observation of failure surfaces of composite laminates we understand the failure initiation and mechanism by Scanning Electron Microscope (SEM). The results of experiment can be concluded as follows. The ultimate strength, elastic modulus and fatigue strength of cross-ply composite laminates are larger than those of quasi-isotropic. As centrally notched, the net area of the specimen is reduced, the ultimate strength and fatigue strength of composite materials are lower. The residual strength, adopted to describe the damage process, is monotonically decreasing with increasing of applied cycles. It is found that the residual strength of cross-ply laminates is larger than that of quasi-isotropic laminates. However, the residual stiffness has little change with increasing of applied cycles.
39

A Multi-scale Framework for Thermo-viscoelastic Analysis of Fiber Metal Laminates

Sawant, Sourabh P. 14 January 2010 (has links)
Fiber Metal Laminates (FML) are hybrid composites with alternate layers of orthotropic fiber reinforced polymers (FRP) and isotropic metal alloys. FML can exhibit a nonlinear thermo-viscoelastic behavior under the influence of external mechanical and non-mechanical stimuli. Such a behavior can be due to the stress and temperature dependent viscoelastic response in one or all of its constituents, namely, the fiber and matrix (within the FRP layers) or the metal layers. To predict the overall thermoviscoelastic response of FML, it is necessary to incorporate different responses of the individual constituents through a suitable multi-scale framework. A multi-scale framework is developed to relate the constituent material responses to the structural response of FML. The multi-scale framework consists of a micromechanical model of unidirectional FRP for ply level homogenization. The upper (structural) level uses a layered composite finite element (FE) with multiple integration points through the thickness. The micromechanical model is implemented at these integration points. Another approach (alternative to use of layered composite element) uses a sublaminate model to homogenize responses of the FRP and metal layers and integrate it to continuum 3D or shell elements within the FE code. Thermo-viscoelastic constitutive models of homogenous orthotropic materials are used at the lowest constituent level, i.e., fiber, matrix, and metal in the framework. The nonlinear and time dependent response of the constituents requires the use of suitable correction algorithms (iterations) at various levels in the multi-scale framework. The multi-scale framework can be efficiently used to analyze nonlinear thermo-viscoelastic responses of FML structural components. The multi-scale framework is also beneficial for designing FML materials and structures since different FML performances can be first simulated by varying constituent properties and microstructural arrangements.
40

Quasi-static and fatigue behaviour of composite bolted joints

Starikov, Roman January 2001 (has links)
No description available.

Page generated in 0.0261 seconds