• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 22
  • 10
  • 9
  • 8
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 218
  • 218
  • 218
  • 60
  • 45
  • 43
  • 37
  • 35
  • 33
  • 26
  • 26
  • 26
  • 24
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An electrical resistance-based fatigue life prediction model and its application in lithium-ion battery ultrasonic welding

Zhao, Nanzhu 09 April 2014 (has links)
Ultrasonic welding is one of the leading technologies for joining multiple, thin sheets of dissimilar materials, such as copper and aluminum, for automotive lithium-ion batteries. The performance of ultrasonic welds, particularly the fatigue life, however, has not been well studied. In this work, a theoretical fatigue life model for ultrasonically welded joints was developed using continuum damage mechanics. In the model, the damage variable was defined as a function of the increase of the joint electrical resistance, resulting in an electrical resistance-based fatigue life prediction model. The fatigue model contains two constants to be determined with experimental data, depending on different fatigue loads and joint properties. As an application, the fatigue life model was validated for Al-Cu lithium-ion battery tab joints. Mechanical fatigue tests were performed under various stress loading conditions for welds made using different welding parameters. It is shown that the developed model can be used to predict the remaining life of the ultrasonically welded battery tab joints for electric and hybrid electric vehicles by monitoring the electrical resistance change. In addition, thermal and electrical fatigue tests were performed for Al-Cu battery tab welds using simulated operating conditions of electrical vehicles. These included temperature cycling between -40 and 90 °C and current cycling of 0 to 10 A. All the tests were conducted on individual weld joints. The results showed that the thermal and electrical loads imposed insignificant effect on the electrical resistance of the battery tab joints. / text
12

First principles study of silicon-based nanomaterials for lithium ion battery anodes

Chou, Chia-Yun Ph. D. 01 September 2015 (has links)
Silicon (Si)-based materials have recently emerged as a promising candidate for anodes in lithium-ion batteries because they exhibit much higher energy-storage capacities than the conventional graphite anode. However, the practical use of Si is hampered by its poor cycleability; during lithiation, Si forms alloys with Li and undergoes significant structural and volume changes, which can cause severe cracking/pulverization and consequent capacity fading arising from the loss of electrical contacts. To overcome these drawbacks, many innovative approaches have been explored with encouraging results; however, many fundamental aspects of the lithiation behavior remain ambiguous. Hence, the focus of this work is to develop a better understanding of the lithiation process at the atomistic scale using quantum mechanical calculations. In addition, based on the improved understanding, we attempt to address the fundamental mechanisms behind the successful approaches to enhance the anode performance. To lay a foundation for the investigation of alloy-type anodes, in Chapter 3, we first examine how lithiation occurs in Si and the formation of crystalline and amorphous LixSi alloys (0 ≤ x ≤ 4); followed by assessing the lithiation-induced changes in the energetics, atomic structure, electronic and mechanical properties, and Li diffusivity. The same approach is then extended to analyze the lithiation behavior of germanium (Ge) and tin (Sn) for developing a generalized understanding on the Group IV alloy-type anodes. Along this comparative study, we notice a few distinguishing features pertain only to Si (or Ge), such as the facile Li diffusion in Ge and facet-dependent lithiation in Si, which are discussed in Chapter 4. Beyond the fundamental research, we also look into factors that may contribute to the improved anode performance, including (i) finetuning of the oxidation effects in Si-rich oxides, [alpha] -SiO [subscript 1/3] (Chapter 5), (ii) maximizing the surface effects through nano-engineered structures (Chapters 6 & 7), and finally (iii) the role of interface in Si-graphene (carbon) composites (Chapter 8).
13

Conductive polymeric binder for lithium-ion battery anode

January 2015 (has links)
abstract: Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle is performed under current of 0.1 C. / Dissertation/Thesis / Masters Thesis Materials Science and Engineering 2015
14

Studies on Electrochemical Reactions at Interface between Graphite and Solution / 黒鉛電極/電解液界面における電気化学反応に関する研究

Yamada, Yuki 24 September 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第15672号 / 工博第3330号 / 新制||工||1502(附属図書館) / 28209 / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 垣内 隆, 教授 井上 正志 / 学位規則第4条第1項該当
15

Boron nitride nanotube-modified silicon oxycarbide ceramic composite: synthesis, characterization and applications in electrochemical energy storage

Abass, Monsuru A. January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Gurpreet Singh / Polymer-derived ceramics (PDCs) such as silicon oxycarbide (SiOC) have shown promise as an electrode material for rechargeable Li-ion batteries (LIBs) owing to the synergy between its disordered carbon phase and hybrid bonds of silicon with oxygen and carbon. In addition to their unique structure, PDCs are known for their high surface area (~822.7 m² g⁻¹), which makes them potential candidates for supercapacitor applications. However, low electrical conductivity, voltage hysteresis, and first cycle lithium irreversibility have hindered their introduction into commercial devices. One approach to improving charge storage capacity is by interfacing the preceramic polymer with boron or aluminium prior pyrolysis. Recent research has shown that chemical interfacing with elemental boron, bulk boron powders and even exfoliated sheets of boron nitride leads to enhancements in thermal and electronic properties of the ceramic. This thesis reports the synthesis of a new type of PDC composite comprising of SiOC embedded with boron nitride nanotubes (BNNTs). This was achieved through the introduction of BNNT in SiOC pre-ceramic polymer at varying wt.% loading (0.25, 0.5 and 2.0 wt.%) followed by thermolysis at high temperature. Electron microscopy and a range of spectroscopy techniques were employed to confirm the polymer-to-ceramic transformation and presence of disordered carbon phase. Transmission electron microscopy confirmed the tubular morphology of BNNT in the composite. To test the material for electrochemical applications, the powders were then made into free-standing paper-like electrodes with reduced graphene oxide (rGO) acting as support material. The synthesized free-standing electrodes were characterized and tested as electrochemical energy storage materials for LIBs and symmetric supercapacitor applications. Among the SiOC-BNNT composite paper tested as anode materials for LIBs, the 0.25 wt.% BNNT composite paper demonstrated the highest first cycle lithiation capacity corresponding to 812 mAh g⁻¹ (at a current density of 100 mA g⁻¹) with a stable charge capacity of 238 mAh g⁻¹ when asymmetrically cycled after 25 cycles. On the contrary, the 0.5 wt.% BNNT composite paper demonstrated the highest specific capacitance corresponding to 78.93 F g⁻¹ at a current density of 1 A g⁻¹ and a cyclic retention of 86% after 185 cycles. This study shows that the free carbon content of SiOC-BNNT ceramic composite can be rationally modified by varying the wt.% of BNNT. As such, the paper composite can be used as an electrode material for electrochemical energy storage.
16

Energy storage for peak shaving : Case study for the distribution grid in Björnarbo

Peterson, Cornelius, Olsén Jonsson, Sofia January 2022 (has links)
Sala-Heby Energi Elnät is a supplier of electrical power for the communities of Sala, Heby, Morgongåva and Björnarbo in Uppland, Sweden. The electrical power grid in this area is currently facing several challenges. Bottlenecks and power shortages are some of them. As an expansion of the Swedish power grid lies many years in the future, there is a need for other solutions to these problems. Because of this, Sala-Heby Energi Elnät is looking at the prospect of installing an energy storage system in the small community of Björnarbo. This report investigates a number of the most commonly used energy storage options available today and concludes that the most suitable choice for Sala-Heby Energi Elnät would be lithium-ion batteries implemented in a battery energy storage system, a BESS. This report also focuses on how a BESS can reduce power peaks by using a method called peak shaving. The financial implications of implementing a BESS of this kind for this purpose are taken into account as well. The study shows that by utilising a BESS with an energy capacity of 500kWh, the power peaks can be reduced by peak shaving. This not only provides a solution to the capacity problem in Sala-Heby Energi Elnät’s power grid, but a BESS could also allow for them to reduce their power subscription to Vattenfall, Sweden’s electricity provider. This would allow Sala-Heby Energi Elnät to make some financial savings. However, a BESS of this type would be very expensive. The conclusion is that a BESS could manage the energy consumption by using peak shaving but will only be financially profitable in the long run for Sala-Heby Energi Elnät.
17

In situ infrared study on interfacial electrochemistry in energy storage devices

Liu, Cheng January 2020 (has links)
No description available.
18

Electrochemical strategies to retrieve lost capacity in Li-ion batteries by reversed Li-trapping

Thulin, Christopher January 2023 (has links)
Since the transportation sector wants to move away from fossil fuels and become more dependen ton clean and green energy, the use of rechargeable batteries is a good solution. Lithium-based batteries work very well as rechargeable batteries in electric vehicles. To extend the cycle life of lithium-based batteries a reversed Li+-trapping protocol has been implemented to extract lostcapacity. Prior to the start of this project, reversed Li+-trapping has been used on a proof-of-concept level and no specific protocol has been utilised in conjunction with full cells. With a protocol that uses constant voltage discharge steps on every fifth cycle, trapped Li+ can diffuse out from the graphite (anode) and travel back to the NMC811 (cathode). This will result in a lower capacity loss than if it only had cycled with constant current, using a C-rate of 1C. If a cell is operated with a constant voltage discharge step on every cycle, high capacity can be maintained for many cycles. This could potentially be used as a formation cycle protocol. The capacity is higher in the long run if the constant voltage discharge step is applied on every fifth cycle rather than every cycle. With a constant voltage discharge cell voltage of 2.8 V good results are obtained. A constant voltage discharge cell voltage of 0 V will however destroy the cell due to Cucurrent collector dissolution.
19

Phenolic resin/polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites and advanced composites for use as anode materials in lithium ion batteries

Lee, Sang Ho 15 December 2007 (has links)
The work presented in this thesis can be divided into two research areas. First, two sets of organic-inorganic hybrid nanocomposites containing phenolic resin/trisilanolphenyl-POSS and phenolic resin/octa(aminophenyl)-T8-POSS nanocomposites were synthesized and the morphology and properties were investigated. Octa(aminophenyl)-T8-polyhedral silsesquioxane is an octafunctional-T8-POSS containing eight aniline-like amino groups, one on each corner silicon atom. It was synthesized in our laboratory by an improved two-step reaction sequence; nitration (HNO3) and reduction (HCOOH/Et3N). Varying amounts of POSS were codissolved with a resole phenolic resin in organic solvent. This was followed by solvent removal and thermal curing. Intermolecular interactions in these nanocomposites were probed by FT-IR. The micro-morphology and aggregation state of POSS were investigated using SEM, TEM, and WAXD studies. The thermal and mechanical properties and thermal stabilities of these composites were investigated by DMTA, DSC, and TGA. Second, two types of carbon-covered mono- and bimetallic (Sn, and Sn/Sb alloy) nanorods for use as anode materials in lithium ion batteries were synthesized by a thermal chemical vapor deposition method. Commercial antimony and tin oxide (Sb3O4/SnO2) nanopowders and added tin (IV) oxide (SnO2) nanoparticles (~19 nm) were used as the precursors for the growth of bimetallic Sn/Sb alloy and monometallic Sn nanorods, respectively. In addition, the shape of the products recovered were different when different hydrocarbon gas flow rates were used for growing intermetallic nanorods in carbon templates. Acetylene and methane were the gases tried. The morphologies and structures of the intermetallic nanorods in carbon templates were investigated using SEM and TEM and proved by X-EDS, XRD, and XPS studies.
20

Exfoliation of Transitional Metal Dichalcogenides (TMDS) and the Application of Co-Exfoliation of MoS2/Natural Graphite in Lithium Ion Battery (LIB)

Xie, Aozhen 10 June 2014 (has links)
No description available.

Page generated in 0.0319 seconds