• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 21
  • 9
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 23
  • 23
  • 22
  • 21
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Utilizing self-similar stochastic processes to model rare events in finance

Wesselhöfft, Niels 24 February 2021 (has links)
In der Statistik und der Mathematik ist die Normalverteilung der am meisten verbreitete, stochastische Term für die Mehrheit der statistischen Modelle. Wir zeigen, dass der entsprechende stochastische Prozess, die Brownsche Bewegung, drei entscheidende empirische Beobachtungen nicht abbildet: schwere Ränder, Langzeitabhängigkeiten und Skalierungsgesetze. Ein selbstähnlicher Prozess, der in der Lage ist Langzeitabhängigkeiten zu modellieren, ist die Gebrochene Brownsche Bewegung, welche durch die Faltung der Inkremente im Limit nicht normalverteilt sein muss. Die Inkremente der Gebrochenen Brownschen Bewegung können durch einen Parameter H, dem Hurst Exponenten, Langzeitabhängigkeiten darstellt werden. Für die Gebrochene Brownsche Bewegung müssten die Skalierungs-(Hurst-) Exponenten über die Momente verschiedener Ordnung konstant sein. Empirisch beobachten wir variierende Hölder-Exponenten, die multifraktales Verhalten implizieren. Wir erklären dieses multifraktale Verhalten durch die Änderung des alpha-stabilen Indizes der alpha-stabilen Verteilung, indem wir Filter für Saisonalitäten und Langzeitabhängigkeiten über verschiedene Zeitfrequenzen anwenden, startend bei 1-minütigen Hochfrequenzdaten. Durch die Anwendung eines Filters für die Langzeitabhängigkeit zeigen wir, dass die Residuen des stochastischen Prozesses geringer Zeitfrequenz (wöchentlich) durch die alpha-stabile Bewegung beschrieben werden können. Dies erlaubt es uns, den empirischen, hochfrequenten Datensatz auf die niederfrequente Zeitfrequenz zu skalieren. Die generierten wöchentlichen Daten aus der Frequenz-Reskalierungs-Methode (FRM) haben schwerere Ränder als der ursprüngliche, wöchentliche Prozess. Wir zeigen, dass eine Teilmenge des Datensatzes genügt, um aus Risikosicht bessere Vorhersagen für den gesamten Datensatz zu erzielen. Im Besonderen wäre die Frequenz-Reskalierungs-Methode (FRM) in der Lage gewesen, die seltenen Events der Finanzkrise 2008 zu modellieren. / Coming from a sphere in statistics and mathematics in which the Normal distribution is the dominating underlying stochastic term for the majority of the models, we indicate that the relevant diffusion, the Brownian Motion, is not accounting for three crucial empirical observations for financial data: Heavy tails, long memory and scaling laws. A self-similar process, which is able to account for long-memory behavior is the Fractional Brownian Motion, which has a possible non-Gaussian limit under convolution of the increments. The increments of the Fractional Brownian Motion can exhibit long memory through a parameter H, the Hurst exponent. For the Fractional Brownian Motion this scaling (Hurst) exponent would be constant over different orders of moments, being unifractal. But empirically, we observe varying Hölder exponents, the continuum of Hurst exponents, which implies multifractal behavior. We explain the multifractal behavior through the changing alpha-stable indices from the alpha-stable distributions over sampling frequencies by applying filters for seasonality and time dependence (long memory) over different sampling frequencies, starting at high-frequencies up to one minute. By utilizing a filter for long memory we show, that the low-sampling frequency process, not containing the time dependence component, can be governed by the alpha-stable motion. Under the alpha-stable motion we propose a semiparametric method coined Frequency Rescaling Methodology (FRM), which allows to rescale the filtered high-frequency data set to the lower sampling frequency. The data sets for e.g. weekly data which we obtain by rescaling high-frequency data with the Frequency Rescaling Method (FRM) are more heavy tailed than we observe empirically. We show that using a subset of the whole data set suffices for the FRM to obtain a better forecast in terms of risk for the whole data set. Specifically, the FRM would have been able to account for tail events of the financial crisis 2008.
92

Wavelet analysis of financial time series / Analyse en ondelettes des séries temporelles financières

Khalfaoui, Rabeh 23 October 2012 (has links)
Cette thèse traite la contribution des méthodes d'ondelettes sur la modélisation des séries temporelles économiques et financières et se compose de deux parties: une partie univariée et une partie multivariée. Dans la première partie (chapitres 2 et 3), nous adoptons le cas univarié. Premièrement, nous examinons la classe des processus longue mémoire non-stationnaires. Une étude de simulation a été effectuée afin de comparer la performance de certaines méthodes d'estimation semi-paramétrique du paramètre d'intégration fractionnaire. Nous examinons aussi la mémoire longue dans la volatilité en utilisant des modèles FIGARCH pour les données de l'énergie. Les résultats montrent que la méthode d'estimation Exact Local Whittle de Shimotsu et Phillips [2005] est la meilleure méthode de détection de longue mémoire et la volatilité du pétrole exhibe une forte évidence de phénomène de mémoire longue. Ensuite, nous analysons le risque de marché des séries de rendements univariées de marchés boursier, qui est mesurée par le risque systématique (bêta) à différents horizons temporels. Les résultats montrent que le Bêta n'est pas stable, en raison de multi-trading stratégies des investisseurs. Les résultats basés sur l'analyse montrent que le risque mesuré par la VaR est plus concentrée aux plus hautes fréquences. La deuxième partie (chapitres 4 et 5) traite l'estimation de la variance et la corrélation conditionnelle des séries temporelles multivariées. Nous considérons deux classes de séries temporelles: les séries temporelles stationnaires (rendements) et les séries temporelles non-stationnaires (séries en niveaux). / This thesis deals with the contribution of wavelet methods on modeling economic and financial time series and consists of two parts: the univariate time series and multivariate time series. In the first part (chapters 2 and 3), we adopt univariate case. First, we examine the class of non-stationary long memory processes. A simulation study is carried out in order to compare the performance of some semi-parametric estimation methods for fractional differencing parameter. We also examine the long memory in volatility using FIGARCH models to model energy data. Results show that the Exact local Whittle estimation method of Shimotsu and Phillips [2005] is the better one and the oil volatility exhibit strong evidence of long memory. Next, we analyze the market risk of univariate stock market returns which is measured by systematic risk (beta) at different time horizons. Results show that beta is not stable, due to multi-trading strategies of investors. Results based on VaR analysis show that risk is more concentrated at higher frequency. The second part (chapters 4 and 5) deals with estimation of the conditional variance and correlation of multivariate time series. We consider two classes of time series: the stationary time series (returns) and the non-stationary time series (levels). We develop a novel approach, which combines wavelet multi-resolution analysis and multivariate GARCH models, i.e. the wavelet-based multivariate GARCH approach. However, to evaluate the volatility forecasts we compare the performance of several multivariate models using some criteria, such as loss functions, VaR estimation and hedging strategies.
93

以厚尾分配及緩長記憶特性模型分析日圓匯率期貨報酬之風險值 / VaR Analysis for the Dollar/Yen Exchange Rate Futures Returns with Fat-Tails and Long Memory

鄭士緯, Cheng, Shih-Wei Unknown Date (has links)
本篇文章將採用長期記憶模型之一的HYGARCH模型,搭配1985年廣場協議後的日圓匯率期貨資料來估計日圓期貨匯率買入和放空部位的日報酬風險值,探討控管日圓匯率期貨在使用上的風險。為了更準確地計算風險值,本文採用常態分配、學生t分配以及偏態學生t分配來作模型估計以及風險值之計算。 本文實證的結果將有兩方面的貢獻:首先,實證結果顯示當我們採用厚尾分配估計風險值時,樣本內風險值的估計誤差會與信賴水準的高低呈正比的現象,證明在極端的風險值估計上,厚尾分配均有較佳的表現。其次,與其他使用HYGARCH模型研究日圓匯率的文章相較,本文在風險控管層面上所提供的偏態學生t分配,於估計風險值時,比起只考慮厚尾的對稱學生t分配將來得更為有效,其不但在估計誤差上較小,而且根據Kupiec檢定法,其在樣本內的風險值估計也有較好的表現。此外,本文也將多方證明此資料的偏態分配屬於右偏。 / In order to manage the exposure of the dollar/yen futures returns with regarding the long memory behavior in volatility, we use the HYGARCH(1,d,1) model with the data after the Plaza Accord to compute daily Value-at-Risk (VaR) of long and short trading positions. To take into account the fat-tail situation in financial time series, we estimate the model under the normal, Student-t, and skewed Student-t distributions. The contribution of this article is twofold. First, the empirical results show that the bias of in-sample VaR increases as the confidence level increases when VaR is calculated with a fat-tail distribution. Second, we provide a better distribution, the skewed Student-t innovation, for estimating the HYGARCH model for the Japanese yen in respect of risk management because the bias under the skewed Student-t innovation is smaller than that under the Student-t distribution, and in-sample VaR of the models with a skewed Student-t distribution outperforms based on Kupiec test. In addition, we get the innovation skewed to the right through the in-sample VaR analysis.
94

Étude de modèles spatiaux et spatio-temporels / Spatial and spatio-temporal models and application

Cisse, Papa Ousmane 11 December 2018 (has links)
Ce travail porte sur les séries spatiales. On étudie les phénomènes dont l’observation est un processus aléatoire indexé par un ensemble spatial. Dans cette thèse on s’intéresse aux données bidimensionnelles régulièrement dispersées dans l’espace, on travaille alors dans un rectangle régulier (sur Z2) . Cette modélisation vise donc à construire des représentations des systèmes suivant leurs dimensions spatiales et à ses applications dans de nombreux domaines tels que la météorologie, l’océanographie, l’agronomie, la géologie, l’épidémiologie, ou encore l’économétrie etc. La modélisation spatiale permet d’aborder la question importante de la prédiction de la valeur d’un champ aléatoire en un endroit donné d’une région. On suppose que la valeur à prédire dépend des observations dans les régions voisines. Ceci montre la nécessité de tenir compte, en plus de leurs caractéristiques statistiques, des relations de dépendance spatiale entre localisations voisines, pour rendre compte de l’ensemble des structures inhérentes aux données. Dans la plupart des champs d’applications, on est souvent confronté du fait que l’une des sources majeures de fluctuations est la saisonnalité. Dans nos travaux on s’intéresse particulièrement à ce phénomène de saisonnalité dans les données spatiales. Faire une modélisation mathématique en tenant en compte l’interaction spatiale des différents points ou localités d’une zone entière serait un apport considérable. En effet un traitement statistique qui prendrait en compte cet aspect et l’intègre de façon adéquat peut corriger une perte d’information, des erreurs de prédictions, des estimations non convergentes et non efficaces. / This thesis focuses on the time series in addition to being observed over time, also have a spatial component. By definition, a spatiotemporal phenomenon is a phenomenon which involves a change in space and time. The spatiotemporal model-ling therefore aims to construct representations of systems taking into account their spatial and temporal dimensions. It has applications in many fields such as meteorology, oceanography, agronomy, geology, epidemiology, image processing or econometrics etc. It allows them to address the important issue of predicting the value of a random field at a given location in a region. Assume that the value depends predict observations in neighbouring regions. This shows the need to consider, in addition to their statistical characteristics, relations of spatial dependence between neighbouring locations, to account for all the inherent data structures. In the exploration of spatiotemporal data, refinement of time series models is to explicitly incorporate the systematic dependencies between observations for a given region, as well as dependencies of a region with neighboring regions. In this context, the class of spatial models called spatiotemporal auto-regressive models (Space-Time Autoregressive models) or STAR was introduced in the early 1970s. It will then be generalized as GSTAR model (Generalized Space-Time Autoregressive models). In most fields of applications, one is often confronted by the fact that one of the major sources of fluctuations is seasonality. In our work we are particularly interested in the phenomenon of seasonality in spatiotemporal data. We develop a new class of models and investigates the properties and estimation methods. Make a mathematical model taking into account the spatial inter-action of different points or locations of an entire area would be a significant contribution. Indeed, a statistical treatment that takes into account this aspect and integrates appropriate way can correct a loss of information, errors in predictions, non-convergent and inefficient estimates.
95

Empirical Performance and Asset Pricing in Markov Jump Diffusion Models / 馬可夫跳躍擴散模型的實證與資產定價

林士貴, Lin, Shih-Kuei Unknown Date (has links)
為了改進Black-Scholes模式的實證現象,許多其他的模型被建議有leptokurtic特性以及波動度聚集的現象。然而對於其他的模型分析的處理依然是一個問題。在本論文中,我們建議使用馬可夫跳躍擴散過程,不僅能整合leptokurtic與波動度微笑特性,而且能產生波動度聚集的與長記憶的現象。然後,我們應用Lucas的一般均衡架構計算選擇權價格,提供均衡下當跳躍的大小服從一些特別的分配時則選擇權價格的解析解。特別地,考慮當跳躍的大小服從兩個情況,破產與lognormal分配。當馬可夫跳躍擴散模型的馬可夫鏈有兩個狀態時,稱為轉換跳躍擴散模型,當跳躍的大小服從lognormal分配我們得到選擇權公式。使用轉換跳躍擴散模型選擇權公式,我們給定一些參數下研究公式的數值極限分析以及敏感度分析。 / To improve the empirical performance of the Black-Scholes model, many alternative models have been proposed to address the leptokurtic feature of the asset return distribution, and the effects of volatility clustering phenomenon. However, analytical tractability remains a problem for most of the alternative models. In this dissertation, we propose a Markov jump diffusion model, that can not only incorporate both the leptokurtic feature and volatility smile, but also present the economic features of volatility clustering and long memory. Next, we apply Lucas's general equilibrium framework to evaluate option price, and to provide analytical solutions of the equilibrium price for European call options when the jump size follows some specific distributions. In particular, two cases are considered, the defaultable one and the lognormal distribution. When the underlying Markov chain of the Markov jump diffusion model has two states, the so-called switch jump diffusion model, we write an explicit analytic formula under the jump size has a lognormal distribution. Numerical approximations of the option prices as well as sensitivity analysis are also given.

Page generated in 0.0272 seconds