• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 83
  • 68
  • 38
  • 20
  • 10
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 575
  • 575
  • 86
  • 84
  • 74
  • 69
  • 61
  • 44
  • 43
  • 42
  • 42
  • 39
  • 38
  • 37
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

The Auroral Radio Emission of the Magnetic B-Type Star ρ OphC

Leto, P., Trigilio, C., Buemi, C. S., Leone, F., Pillitteri, I., Fossati, L., Cavallaro, F., Oskinova, L. M., Ignace, R., Krtička, J., Umana, G., Catanzaro, G., Ingallinera, A., Bufano, F., Riggi, S., Cerrigone, L., Loru, S., Schilliró, F., Agliozzo, C., Phillips, N. M., Giarrusso, M., Robrade, J. 01 November 2020 (has links)
The non-thermal radio emission of main-sequence early-type stars is a signature of stellar magnetism. We present multiwavelength (1.6-16.7 GHz) ATCA measurements of the early-type magnetic star ρ OphC, which is a flat-spectrum non-thermal radio source. The ρ OphC radio emission is partially circularly polarized with a steep spectral dependence: the fraction of polarized emission is about 60 at the lowest frequency sub-band (1.6 GHz) while is undetected at 16.7 GHz. This is clear evidence of coherent Auroral Radio Emission (ARE) from the ρ OphC magnetosphere. Interestingly, the detection of the ρ OphC's ARE is not related to a peculiar rotational phase. This is a consequence of the stellar geometry, which makes the strongly anisotropic radiation beam of the amplified radiation always pointed towards Earth. The circular polarization sign evidences mainly amplification of the ordinary mode of the electromagnetic wave, consistent with a maser amplification occurring within dense regions. This is indirect evidence of the plasma evaporation from the polar caps, a phenomenon responsible for the thermal X-ray aurorae. ρ OphC is not the first early-type magnetic star showing the O-mode dominated ARE but is the first star with the ARE always on view.
322

Magnetic Field Sensing with Slab Coupled Optical Fiber Sensors

Shreeve, Bryson J. 28 June 2011 (has links) (PDF)
This thesis reports an in-fiber magnetic field sensor that is able to detect magnetic fields as low as 2 A/m at a spatial resolution of 1 mm. The small sensor consists of a magneto-optic slab waveguide, bismuth-doped rare earth iron garnet (Bi-RIG) that is coupled to an optical fiber. By coupling light from the fiber to the slab waveguide, it becomes an in-fiber magnetic field sensor. This is due to the Magneto-Optic Kerr effect; a change in refractive index is proportional to the applied magnetic field. When an AC field is applied, an AC component in the output power can be detected by a spectrum analyzer. The novelties of Magneto-Optic Slab Coupled Optical Sensor (MO-SCOS) devices include their small compact nature and a dielectric structure allowing low electromagnetic interference. Due to their compact size they are capable of placement within devices to measure interior electromagnetic fields immeasurable by other sensors that are either too large for internal placement or disruptive of the internal fields due to metallic structure. This work also reports progress on EO SCOS development. The EO sensor has found application in new environments including the electromagnetic rail gun, and a dual-axis sensor.
323

New Multiwavelength Observations of the Of?p Star CPD -28◦ 2561.

Hubrig, S., Schöller, M., Kholtygin, A., Tsumura, H., Hoshino, A., Kitamoto, S., Oskinova, L., Ignace, Richard, Todt, H., Ilyin, I. 05 January 2015 (has links) (PDF)
A rather strong mean longitudinal magnetic field of the order of a few hundred gauss was detected a few years ago in the Of?p star CPD −28° 2561 using FORS2 (FOcal Reducer low dispersion Spectrograph 2) low-resolution spectropolarimetric observations. In this work, we present additional low-resolution spectropolarimetric observations obtained during several weeks in 2013 December using FORS 2 mounted at the 8-m Antu telescope of the Very Large Telescope (VLT). These observations cover a little less than half of the stellar rotation period of 73.41 d mentioned in the literature. The behaviour of the mean longitudinal magnetic field is consistent with the assumption of a single-wave variation during the stellar rotation cycle, indicating a dominant dipolar contribution to the magnetic field topology. The estimated polar strength of the surface dipole Bd is larger than 1.15 kG. Further, we compared the behaviour of the line profiles of various elements at different rotation phases associated with different magnetic field strengths. The strongest contribution of the emission component is observed at the phases when the magnetic field shows a negative or positive extremum. The comparison of the spectral behaviour of CPD −28° 2561 with that of another Of?p star, HD 148937 of similar spectral type, reveals remarkable differences in the degree of variability between both stars. Finally, we present new X-ray observations obtained with the Suzaku X-ray Observatory. We report that the star is X-ray bright with log LX/Lbol ≈ −5.7. The low-resolution X-ray spectra reveal the presence of a plasma heated up to 24 MK. We associate the 24 MK plasma in CPD −28° 2561 with the presence of a kG strong magnetic field capable to confine stellar wind.
324

Ultra-compact Lasers based on GaAs Nanowires for Photonic Integrated Circuits

Aman, Gyanan January 2022 (has links)
No description available.
325

Влияние магнитного поля на фазовые переходы и структуру растворов и расплавов гибкоцепных полимеров : магистерская диссертация / The Effect of a Magnetic Field on Phase Transitions and Structure of Solutions and Melts of Flexible Chain Polymers

Жернов, И. В., Zhernov, I. V. January 2016 (has links)
Методами точек помутнения, поляризационной микроскопии и рентгеноструктурного анализа изучены фазовые переходы систем ПЭ – о-ксилол, ПЭ – н-гексан, ПЭ – хлороформ, ПЭ – о-дихлорбензол, ПЭГ – 1,4-диоксан и ПЭГ – толуол, а также структура выделенных их них полимерных образований в магнитном поле и в его отсутствие. Построены фазовые диаграммы систем. Установлено, что магнитное поле приводит к повышению температур кристаллизации растворов и расплавов ПЭ и ПЭГ. Обнаружено, что в растворах ПЭГ в магнитном поле образуются сферолиты существенно меньших размеров, чем в отсутствие магнитного поля. Определены степени кристалличности образцов ПЭ и ПЭГ, выделенных из растворов и расплавов. Показано, что магнитное поле увеличивает степень кристалличности ПЭГ, но не влияет на степень кристалличности ПЭ. / Phase transitions of the PE – xylol, PE – hexane, PE – chloroform, PE – dichlorobenzene, PEG – 1,4-dioxane and PEG – toluene systems, and also the structure of the polymers separated from these systems have been studied using the cloud-point method, polarizing microscopy and the X-ray diffraction under magnetic field and in its absence. Phase diagrams of these systems are constructed. It is shown that the magnetic field leads to the increase in polymer crystallization temperatures from solutions and melts. It is revealed that the sizes of spherulites formed in PEG solutions under magnetic field are significantly smaller, than that in the magnetic field absence. The crystallinity degree of the PE and PEG samples separated from solutions and melts was determined. It was shown that the magnetic field increases the crystallinity degree of PEG, but doesn't influence on the PE crystallinity degree.
326

Beltrami Flows

Margetis, Alexander 11 May 2018 (has links)
No description available.
327

Association and Dissociation of Ultracold Fermions Using an Oscillating Magnetic Field

Mohapatra, Abhishek, Mohapatra 11 October 2018 (has links)
No description available.
328

Studies of thermal phase fluctuations in severely underdoped YBCO films

Zuev, Yuri L. 12 September 2005 (has links)
No description available.
329

Synergetic Attenuation of Stray Magnetic Field in Inductive Power Transfer

Lu, Ming 28 July 2017 (has links)
Significant stray magnetic field exists around the coils when charging the electric vehicles (EVs) with inductive power transfer (IPT), owning to the large air gap between the transmitter and receiver. The methods for field attenuation usually introduce extra losses and reduce the efficiency. This study focuses on the synergetic attenuation of stray magnetic field which is optimized simultaneously with the efficiency. The optimization is realized with Pareto front. In this dissertation, three methods are discussed for the field attenuation. The first method is to tune the physical parameters of the winding, such as the inner radii, outer radii, distribution of the turns, and types of the litz wires. The second method is to add metal shields around the IPT coils, in which litz wires are used as shields to reduce the shielding losses. The third method is to control the phases of winding currents, which avoids increasing the size and weight of the IPT coils. To attenuate the stray magnetic field by tuning the physical parameters, the conventional method is to sweep all the physical parameters in finite-element simulation. This takes thousands of simulations to derive the Pareto front, and it's especially time-consuming for three-dimensional simulations. This dissertation demonstrates a faster method to derive the Pareto front. The windings are replaced by the lumped loops. As long as the number of turns for each loop is known, the efficiency and magnetic field are calculated directly from the permeance matrices and current-to-field matrices. The sweep of physical parameters in finite-element simulation is replaced by the sweep of the turns numbers for the lumped loops in calculation. Only tens of simulations are required in the entire procedure, which are used to derive the matrices. An exemplary set of coils was built and tested. The efficiency from the matrix calculation is the same as the experimental measurement. The difference for stray magnetic field is less than 12.5%. Metal shields attenuate the stray magnetic field effectively, but generates significant losses owning to the uneven distribution of shield currents. This dissertation uses litz wires to replace the conventional plate shield or ring shield. Skin effect is eliminated so the shield currents are uniformly distributed and the losses are reduced. The litz shields are categorized to two types: shorted litz shield and driven litz shield. Circuit models are derived to analyze their behaviors. The concept of lumped-loop model is applied to derive the Pareto front of efficiency versus stray magnetic field for the coils with litz shield. In an exemplary IPT system, coils without metal shield and with metal shields are optimized for the same efficiency. Both the simulation and experimental measurement verify that the shorted litz shield has the best performance. The stray magnetic field is attenuated by 65% compared to the coils without shield. This dissertation also introduces the method to attenuate the stray magnetic field by controlling the phases of winding currents. The magnetic field around the coils is decomposed to the component in the axial direction and the component in the radial direction. The axial component decreases with smaller phase difference between windings' currents, while the radial component exhibits the opposite property. Because the axial component is dominant around the IPT coils, decreasing the phase difference is preferred. The dual-side-controlled converter is applied for the circuit realization. Bridges with active switches are used for both the inverter on the transmitter side and the rectifier on the receiver side. The effectiveness of this method was verified both in simulation and experiment. Compared to the conventional series-series IPT with 90° phase difference between winding currents, stray magnetic field was attenuated by up to 30% and 40% when the phase differences of winding currents are 50° and 40°, respectively. Furthermore, an analytical method is investigated to calculate the proximity-effect resistance of the planar coils with ferrite plate. The objective of this method is to work together with the fast optimization which uses the lumped-loop model. The existence of the ferrite plate complicates the calculation of the magnetic field across each turn which is critical to derive the proximity-effect resistance. In this dissertation, the ferrite plate is replaced by the mirrored turns according to the method of image. The magnetic fields are then obtained from Ampere's Law and Biot-Savart Law. Up to 200 kHz, the difference of the proximity-effect resistance is less than 15% between calculation and measurement. / Ph. D.
330

Feynman path integral for Schrödinger equation with magnetic field

Cangiotti, Nicolò 14 February 2020 (has links)
Feynman path integrals introduced heuristically in the 1940s are a powerful tool used in many areas of physics, but also an intriguing mathematical challenge. In this work we used techniques of infinite dimensional integration (i.e. the infinite dimensional oscillatory integrals) in two different, but strictly connected, directions. On the one hand we construct a functional integral representation for solutions of a general high-order heat-type equations exploiting a recent generalization of infinite dimensional Fresnel integrals; in this framework we prove a a Girsanov-type formula, which is related, in the case of Schrödinger equation, to the Feynman path integral representation for the solution in presence of a magnetic field; eventually a new phase space path integral solution for higher-order heat-type equations is also presented. On the other hand for the three dimensional Schrödinger equation with magnetic field we provide a rigorous mathematical Feynman path integral formula still in the context of infinite dimensional oscillatory integrals; moreover, the requirement of independence of the integral on the approximation procedure forces the introduction of a counterterm, which has to be added to the classical action functional (this is done by the example of a linear vector potential). Thanks to that, it is possible to give a natural explanation for the appearance of the Stratonovich integral in the path integral formula for both the Schrödinger and the heat equation with magnetic field.

Page generated in 0.3094 seconds