• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 83
  • 68
  • 38
  • 20
  • 10
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 575
  • 575
  • 86
  • 84
  • 74
  • 69
  • 61
  • 44
  • 43
  • 42
  • 42
  • 39
  • 38
  • 37
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Μελέτη κίνησης βιομαγνητικών ρευστών υπό την επίδραση μαγνητικού πεδίου

Τζιρτζιλάκης, Ευστράτιος 24 June 2007 (has links)
Στην παρούσα διατριβή μελετάται η ροή βιομαγνητικών ρευστών υπό την επίδραση μαγνητικού πεδίου. Ως βιομαγνητικό ορίζεται ένα ρευστό το οποίο υπάρχει σε έναν έμβιο οργανισμό και η ροή του επηρεάζεται πάντοτε από την παρουσία μαγνητικού πεδίου. Χαρακτηριστικό βιομαγνητικό ρευστό θεωρείται το αίμα και αυτό χρησιμοποιείται για να δωθούν τιμές στις παραμέτρους που εμφανίζονται στα προβλήματα που μελετώνται.... / - / The flow of biomagnetic fluids in the presence of an applied magnetic field is studied in the present thesis. As biomagnetic is defined a fluid that exists in a living creature (biofluid) and its flow is affected by the presence of a magnetic field. The most characteristic biofluid is the blood. The Newtonian viscous laminar incompressible blood flow is considered in the present thesis for the estimation of the parameters appearing in the problems under consideration. An introduction is made at the first chapter of the thesis concerning fundamental concepts of the magnetic fluids such as the magnetization and equilibrium flow. Experimental applications in the biomedicine are also given as well as the mathematical model describing the flow of biological fluids under the influence of an applied magnetic field. In order to investigate the effect of the magnetic field in the next three chapters basic flow problems of biomagnetic fluid (blood) are studied. In the second chapter the flow over a stretching sheet under the influence of an applied magnetic field is studied. The physical problem is described by a coupled system of non linear partial differential equations (pdes) with their appropriate boundary conditions. For the variation of the magnetization with the temperature and/or the magnetic field intensity two cases are considered (I and II). The arising system describing the physical problem is transformed into corresponding coupled systems of non linear ordinary differential equations (ods) after the introduction of proper non dimensional variables. For the numerical solution, finite differences are used for the case I, whereas a spectral method with Chebyshev polynomials is also used for the case II. It is apparent that the application of the magnetic field increases the skin friction and the pressure on the surface, whereas the heat transfer is reducing. A comparison is also made between the two numerical methods used in the case II. The efficiency and the accuracy of the spectral method over against the finite differences method are demonstrated. The superiority of the spectral method is apparent especially when high accuracy solution is desired. In the third chapter the fundamental problem of the biomagnetic fluid flow taking place in a rectangular duct under the influence of an applied magnetic field is studied. For the numerical solution of the problem, which is described by a coupled and non linear system of PDEs, with their appropriate boundary conditions, the stream function-vorticity formulation is adopted and the solution is obtained developing an efficient numerical technique based on the upwind finite differences joint with a line by line implicit method. Results concerning the velocity and temperature field, skin friction and rate of heat transfer indicate that the presence of magnetic field appreciable influence the flow field. The three dimensional, fully developed flow of a biomagnetic fluid in an impermeable rectangular duct under the influence of an applied magnetic field is numerically studied in the fourth chapter. The system of the partial differential equations, resulting after the introduction of appropriate non-dimensional variables, is solved applying an efficient numerical technique based on a pressure-linked pseudotransient method on a collocated grid. Results concerning the existence and the uniqueness of the solution are also given. The obtained results, for different values for the parameters entering into the problem under consideration, show that the flow is appreciably influenced by the presence of the magnetic field in the sense of reduction of the axial velocity and the formation of two vortices at the transverse plane. These first results indicate that the magnetic field significantly influences the blood flow and encourage further study in more complex geometries, oscillatory flow or including the non-Newtonian behaviour of blood in order to demonstrate applications in biomechanics and biomedicine.
282

A feasibility study about the use of vector tomography for the reconstruction of the coronal magnetic field / A feasibility study about the use of vector tomography for the reconstruction of the coronal magnetic field

Kramar, Maxim 19 September 2005 (has links)
No description available.
283

Plonųjų manganitų sluoksnių tyrimas stipriuose impulsiniuose elektriniuose ir magnetiniuose laukuose / Investigation of thin manganite films at strong pulsed electric and magnetic fields

Cimmperman, Piotras 03 October 2006 (has links)
The main aim of this work was to investigate electrical conductivity of La-Ca(Sr)-MnO thin films at high pulsed electric and magnetic fields and to clear up the possibilities to use these materials for high pulsed magnetic field sensor and fault current limiter applications. The dissertation consists of the preface, six chapters, summary and main conclusions, references, list of publications and abstract (in Lithuanian). The main objectives of the work, scientific novelty, goals, validation of results, and statements for defense are presented in the preface. Chapter 1 presents an introduction and review of previous works on electroresistance (ER) and magnetoresistance (MR) phenomena in manganites. Chapter 2 presents a description of two deposition techniques which were used for preparation of thin manganite films: metal organic chemical vapour deposition (MOCVD) and pulsed laser deposition (PLD). Measurement equipment and methods are described in Chapter 3. The resistance dependence on voltage was investigated using electric pulses with duration of 5–30 ns and amplitude up to 1000 V in the temperature range of 4.2–300 K. For magnetoresistance measurements a pulsed magnetic field generator, which generates magnetic field pulses of 0.6–2 ms duration with amplitude up to 50 T was used. Chapter 4 presents an investigation of surface morphology of prepared films and a characterization of their properties at low electric and magnetic fields. The electric and magnetic properties... [to full text]
284

Plonųjų manganitų sluoksnių tyrimas stipriuose impulsiniuose elektriniuose ir magnetiniuose laukuose / Investigation of thin manganite films at strong pulsed electric and magnetic fields

Cimmperman, Piotras 04 October 2006 (has links)
The main aim of this work was to investigate electrical conductivity of La-Ca(Sr)-MnO thin films at high pulsed electric and magnetic fields and to clear up the possibilities to use these materials for high pulsed magnetic field sensor and fault current limiter applications.
285

Robotų tarpusavio orientavimo sistemos tyrimas / Research of the Robot Inter-Orientation System

Žvirblis, Deimantas 18 June 2013 (has links)
Šiame magistro darbe tiriama robotų tarpusavio orientavimo sistema, kai kryptis nustatoma pagal magnetinio lauko poveikį robotui. Teorinėje dalyje apžvelgti robotų padėties erdvėje ir tarpusavio padėties nustatymo būdai. Išnagrinėtas magnetinio lauko pokyčių taikymas robotų tarpusavio padėčiai nustatyti, pateikti magnetinio lauko jutiklio paklaidų mažinimo metodai, formulės. Tiriamojoje dalyje sudaryta sistemos funkcinė schema. Ištirtos magnetometrų savybės ir parinktas tinkamiausias. Sudaryta sistemos principinė elektrinė schema. Pasirinktos trys magnetinių lauko generatorių – elektromagnetų formos ir atlikti jų magnetinių laukų tyrimai, naudojant specializuotą programą „Maxwell“. Rezultatai pateikti vaizdiniu formatu su magnetinio lauko pasiskirstymu. Atliktas sistemos eksperimentinis tyrimas, pateiktas robotų tarpusavio krypties nustatymo algoritmas, formulės ir metodika. Eksperimentų metu gauti rezultatai pateikti grafiškai. Atlikus sistemos eksperimentinį tyrimą, pateiktos baigiamojo darbo išvados ir pasiūlymai. Darbą sudaro 5 dalys: įvadas, literatūros apžvalga, teorinė ir tiriamoji dalys, išvados ir pasiūlymai, literatūros sąrašas. Darbo apimtis – 72 p. teksto be priedų, 41 pav., 2 lent., 26 bibliografiniai šaltiniai. Atskirai pridedami darbo priedai. / This Master thesis is a research of the robot inter– orientation system, when the direction is determined by the magnetic field effect on the robot. Theoretical part is an analysis of robot navigation and robot inter – orientation. Examined the application of the magnetic field change for robots inter – position determination, also magnetic sensor errors reduction methods are presented as well as the equations. The research part contains of functional and principle electrical scheme designing. Properties of the magnetometers are tested to select the most appropriate. Three different designs were chosen of magnetic field generator (electromagnet) to perform magnetic field studies using specialized software “Maxwell”. Results are presented in graphical form, showing distribution of magnetic fields. Experimental system study is performed also the robot between direction finding algorithm, equations and methods are presented. The experimental results are presented graphically. The conclusions and recommendations are given at the end of this work. Structure: introduction, analyze of literature, theoretical and practical parts, conclusions and suggestions, references. The thesis consists of 72 p. text without appendixes, 41 pictures, 2 tables, 26 bibliographical entries. Appendixes included.
286

Spatial variation of radio frequency magnetic field exposure from clinical pulse sequences in 1.5T MRI / Spatial variation av radiofrekvent magnetfältsexponering från kliniska pulssekvenser i 1,5T MRT

Forsberg, Andreas January 2014 (has links)
Cell biological exposure studies in magnetic resonance imaging (MRI) environment, where a complex mixture of strong magnetic fields are present, have attracted considerable interest in recent years. The outcome of such studies might depend strongly on the conditions, for example exposure parameters and spatial variations of exposure. The aim of this thesis has been to give a detailed description of how the radio frequency (RF) magnetic field varies with position and sequence choice within an MRI bore from a patient perspective and to highlight the need of better consistency in future research. Method: A straightforward theoretical description on the contribution to the RF magnetic field from a birdcage coil is given. A one dimensional coaxial loop antenna has been used as a probe to measure spatial variations of the RF magnetic field in a 1.5T MRI scanner. An exposure matrix containing RF magnetic field strength (H1-field) amplitudes in three dimensions was constructed and used to study several clinical protocols and sequences. A qualified correspondence measurement was also made on a 3T MRI scanner. Results: Around isocenter, for a common field-of-view (FOV), changes in exposure conditions were small; however, rapid changes of exposure conditions occurred upon approaching the end rings. The dominating H1-field component switched from lying in the xy-plane to pointing the z-direction and was roughly 3 times larger than in isocenter. Practical difficulties indicate even larger differences at positions not measurable with the equipment at hand. The strongest H1-field component was 32.6 A/m at position (x,y,z)=(-24,8,24) cm from the isocenter. Conclusions: Machine parameters such as repetition time, echo time and flip angle have little to do with actual exposure. Specic absorption rate (SAR) values correlated well with the square of measured root-mean-square (RMS) values of the magnetic field (B1,RMS) but not with peak values of the magnetic field (B1,peak), indicating that peak values are not unlikely to be part of compromising factors in previous contradictory exposure research on genotoxicity. Furthermore exposure conditions depend strongly on position and unfavorable situations may occur in the periphery of the birdcage coil. Potentially elevated risks for conducting surfaces, for example arms or external fixations, in the proximity of the end rings, are proposed. Aside from spatial variation consideration on which type of geometry exposed cell-biological samples are placed in should be held since eddy currents, hot-spots and proper SAR depend on geometry. Conditions may vary considerably between in-vitro, ex-vivo and in-vivo studies since geometries of test tubes, petri dishes and humans differ.
287

Radiated Electric and Magnetic Fields Caused by Lightning Return Strokes to the Toronto CN Tower

Boev, Ivan Krasimirov 05 August 2010 (has links)
In the present PhD work, three sophisticated models based on the "Engineering" modeling approach have been utilized to conveniently describe and thoroughly analyze details of Lightning events at the CN Tower. Both the CN Tower and the Lightning Channel are represented by a number of connected in series Transmission Line sections in order to account for the variations in the shape of the tower and for plasma processes that take place within the Lightning Channel. A sum of two Heidler functions is used to describe the "uncontaminated" Return Stroke current, which is injected at the attachment point between the CN Tower and the Lightning Channel. Reflections and refractions at all points of mismatched impedances are considered until their contribution becomes less than 1% of the originally injected current wave. In the proposed models, the problem with the current discontinuity at the Lightning Channel front, commonly taken care of by introducing a "turn-on" term when computing radiation fields, is uniquely treated by introducing reflected and transmitted components. For the first time, variable speed of propagation of the Return Stroke current front has been considered and its influence upon the predicted current distributions along the whole Lightning Channel path and upon the radiated distant fields analyzed. Furthermore, as another novelty, computation of the electromagnetic field is accomplished in Cartesian Coordinates. This fact permits to relax the requirement on the verticality of the Lightning Channel, normally imposed in Cylindrical Coordinates. Therefore, it becomes possible to study without difficulty the influence of a slanted Lightning Channel upon the surrounding electromagnetic field. Since the proposed sophisticated Five-Section Model has the capability to represent very closely the structure of the CN Tower and to emulate faithfully the shape of, as well as physical processes within the Lightning Channel, it is believed to have the potential of truthfully reproducing observed fields. The developed modeling approach can be easily adapted to study the anticipated radiated fields at tall structures even before construction.
288

Fibre Optic Magnetic Field Sensors Utilizing Iron Garnet Materials

Sohlström, Hans January 1993 (has links)
This thesis deals with the subject of fibre optic magnetic field sensors utilizing iron garnet materials. Such materials exhibit a large Faraday rotation which make them advantageous for application in compact mag­netic field sensors. After an introduction, in which fibre optic sensors and optical methods to measure electric current are reviewed, the original research work is summarized. A system for the measurement of the magneto-optic properties of trans­parent materials is described. Measurement results, showing the influence of temperature, magnetic field direction and sample treatment on the magneto-optical proper­ties of YIG-crystals, are presented. The proper­ties of thin magneto-optical waveguiding films have also been studied using different light coupling methods. Measurement results obtained for holo­graphic grating, prism and edge (end-fire) light coupling to different substituted YIG films are presented. It is shown that the launching method may affect the properties to be measured. The design and performance of several versions of extrinsic guided wave fibre optic magnetic field sensors are then reported. The sensors employ substi­tuted YIG (Yttrium Iron Garnet, Y3Fe5O12) thin film waveguides as sensing elements. Polari­zation maintaining fibres were used as feed and return to provide two signal channels. The signals were combined in a balanced measure­ment system, providing insensitivity to both fluctuations in optical power and loss. Sensors have been made both with separate fibres to guide the light to and from the sensing element and with a single fibre for both functions. The two fibre version, although less ”elegant”, is found to have a better performance. This version also makes it possible to determine both the magnitude and sign of the magnetic field. Measurement results indicate a usable measurement range of at least several mT with a noise equivalent magnetic field level of less than 8 nT/root(Hz). The design and performance of multimode fibre optic magnetic field sensors utilizing the Faraday effect in an epitaxially grown thick (YbTbBi)IG film is also described. This type of sensor is found to be linear over a range from 27 mT to less than 270 nT. Sensor prototypes suitable for current monitoring in high voltage transmission lines have also been developed. / QC 20111209 / YIG
289

Capteur de courant à Magnéto-Impédance Géante (GMI) souple et portatif / Flexible and portable GMI current sensor

Nabias, Julie 14 February 2018 (has links)
La Magnéto-Impédance Géante (GMI pour Giant Magneto-Impedance) présente un certain nombre d’avantages, tels la haute sensibilité, la haute résolution de détection, la large bande passante et la flexibilité de l’élément sensible qui rendent cette technologie très prometteuse pour la réalisation de capteurs de courant flexibles, sans contact, capables de mesurer à la fois les courants continus (DC) et alternatifs (AC).Ce travail de thèse vise à explorer la faisabilité d’un capteur de courant flexible à base de GMI, en portant une attention particulière sur l’impact des paramètres d’influence qui conditionnent largement les solutions de mise en œuvre du capteur.Les effets de la température et des contraintes mécaniques de flexion et de torsion, qui s’appliquent dans un environnement de mesure réel, sont caractérisés en prenant en compte les grandeurs intrinsèques du fil nécessaires à la réalisation d’un capteur industriel. L’impact de la mise en œuvre et du conditionnement électronique vis-à-vis de ces grandeurs d’influence est aussi étudié. Les effets des perturbations magnétiques externes et de l’excentration du conducteur sous test dans la boucle de mesure sont quantifiés et une solution de blindage est proposée. Enfin, le prototype de capteur obtenu à l’issue de ces travaux est présenté, ainsi que ses performances, en dégageant les pistes d’optimisation et d’amélioration. / The GMI effect displays several advantages, such as high sensitivity, high detection resolution and bandwidth, and mechanical flexibility. These advantages predispose this technology to the implementation of flexible contactless current sensors measuring both DC and AC currents.This thesis work aims at exploring the feasibility of a flexible GMI current sensor. A particular attention to the impact of influence parameters which largely condition the design solutions of the sensor has been paid.The effects of temperature and mechanical constraints such as bending and torsion, which apply in a real measuring environment, are characterized by taking into account the intrinsic features which are necessary to the design of the sensor. The impact of the general measuring configuration and electronics are also studied. The effects of magnetic disturbances and of the position of the current-carrying conductor in the measuring loop are quantified and an adequate shielding method is proposed. Finally, the sensor prototype obtained at the end of this work is described with its performances and the possible optimization and enhancement ways.
290

Density, temperature and magnetic field measurements in low density plasmas

Oliver, Matthew January 2018 (has links)
Low density plasmas are found throughout the known universe. Therefore, accurate diagnostic methods have implications for our understanding of a variety of topics, ranging from star formation to the semi conductor industry. Low density plasmas are ubiquitous in the material processing industry. However, measurements of the electron temperature and density, two of the most fundamental plasma properties, are not straightforward. In the laboratory, we create a low density, radio frequency, helium plasma with a bi-Maxwellian electron distribution, similar to those found in the semiconductor processing industry. We use optical emission spectroscopy to perform a non invasive measurement of the plasma conditions. We compare this to measurements obtained using a Langmuir probe, a commonly used invasive diagnostic. The optical emission spectroscopy is found to be insensitive to electron density but good agreement is found between the two techniques for values of the temperature of the hot electron component of the bi-Maxwellian. Plasmas created with high-intensity lasers are able to recreate conditions similar to those found during astrophysical events. This development has led to these condi- tions being explored in laboratories around the world. An experiment was performed at the Rutherford Appleton Laboratory in Didcot, UK, investigating the properties of supersonic turbulent jets. For the first time a magneto-optic probe was used to measure the magnetic field in a low-density supersonic turbulent plasma. The results were compared to measurements taken using a magnetic-induction probe. Good agreement was found between measurements of the magnetic field strength within the plasma; however, the magnetic power spectra differ. We attribute this to the dif- ference in integration length between the two measurements. Statistical properties of the velocity field are inferred from the magnetic field measurements, which compare favourably to astrophysical observations and hydrodynamic simulations.

Page generated in 0.0626 seconds