• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 32
  • 14
  • 10
  • 8
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 224
  • 224
  • 36
  • 33
  • 32
  • 29
  • 28
  • 26
  • 23
  • 22
  • 20
  • 20
  • 19
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Mass Balance Tracer Techniques for Integrating in situ Soil Ingestion Rates into Human and Ecological Risk Assessments

Doyle, James 12 January 2012 (has links)
Quantitative soil ingestion studies employing a mass balance tracer approach have been used to determine soil ingestion rate for use in human health risk assessments (HHRAs). Past studies have focused on soil ingestion in populations living in urban/suburban environments and the results have been highly variable. Moreover, there is a paucity of reliable quantitative soil ingestion data to support human health risk assessments of other lifestyles that may be predisposed to ingesting soil, such as indigenous populations following traditional lifestyles. Thus, the primary objective of the research was to determine if populations following lifestyles typical of traditional land use practices in rural or wilderness areas ingest more soil than populations living in urban or suburban environments. Further, the research investigated the use of alternative mass balance tracers, specifically isotopes of the 238U and 232Th decay series, to reduce soil ingestion estimate variability. Mass balance tracer methods were developed and validated in a pilot canine study, and methods using isotope tracers were adapted to permit quantification of sediment ingestion in the benthic fish Moxostoma macrolepidotum (Shorthead Redhorse Sucker). A pilot human soil ingestion study of 7 subjects from an Aboriginal community in British Columbia was conducted over a 3-week period. The mean soil ingestion rate calculated using the daily means of the 4 elemental tracers with the lowest food-to-soil ratios (i.e., Al, Ce, La, Si) was observed to be approximately 74 mg d-1 (standard deviation 91 mg d-1), The median soil ingestion rate was 60 mg d-1, and the 90th percentile was 196 mg d-1. These soil ingestion rate estimates are higher than those currently recommended for HHRAs of adults, and higher than those obtained in most previous studies of adults. However, the estimates are much lower than the earlier qualitative assessments for subsistence lifestyles (i.e., 330-400 mg d-1). The study results also demonstrated that isotopes of the 238U and 232Th decay series radionuclide are not reliable mass balance tracers for estimating soil ingestion in humans; however, they may be useful for quantifying soil and sediment ingestion in wildlife.
62

Invasion-induced Changes to the Offshore Lake Ontario Food Web and the Trophic Consequence for Bloater (Coregonus hoyi) Reestablishment

Stewart, Thomas Joseph 21 April 2010 (has links)
I compared changes in offshore Lake Ontario major species-group biomass, production and diets before (1987-1991) and after (2001-2005) invasion-induced ecological change. I synthesized the observations into carbon-based mass-balanced food webs linking two pathways of energy flow; the grazing chain (phytoplankton-zooplankton-fish) and the microbial loop (autotrophic bacteria-heterotrophic protozoans) and determined how the structure and function of the food web changed between time-periods. I use the food web descriptions to simulate the reestablishment of native deepwater bloater. I developed empirical models describing spatial variation in temperature and applied them to investigate predator temperature distributions, bioenergetic consequences of alewife diet and distribution shifts, and zooplankton productivity. Primary production declined as did the biomass and production of all species-groups except Chinook salmon. Total zooplankton production declined by approximately half with cyclopoid copepod production declining proportionately more. Zooplankton species richness and diversity were unaffected. Alewife adapted to low zooplankton production by consuming more Mysis, increasing their trophic level. The increased prey-size and exploitation of spatial heterogeneity in resource patches and temperature may have allowed alewife to maintain their growth efficiency. The trophic level also increased for smelt, adult sculpin, adult alewife and Chinook salmon. Phytoplankton grazing rates declined and predation pressure increased on Mysis, adult smelt and alewife, and decreased on protozoans. Resource to consumer trophic transfer efficiencies changed; increasing for protozoans, Mysis, Chinook salmon and other salmonines and decreasing for zooplankton, prey-fish and benthos. The changes suggest both bottom-up and top-down influences on food web structure. The direct trophic influences of invasive species on the offshore Lake Ontario food web were minor. Carbon flows to Mysis indicated an important, and changing ecological role for this species and we hypothesize that Mysis may have contributed to Diporeia declines. Simulations suggest that only a small reestablished bloater population, limited by Diporeia production, could be sustained.
63

Invasion-induced Changes to the Offshore Lake Ontario Food Web and the Trophic Consequence for Bloater (Coregonus hoyi) Reestablishment

Stewart, Thomas Joseph 21 April 2010 (has links)
I compared changes in offshore Lake Ontario major species-group biomass, production and diets before (1987-1991) and after (2001-2005) invasion-induced ecological change. I synthesized the observations into carbon-based mass-balanced food webs linking two pathways of energy flow; the grazing chain (phytoplankton-zooplankton-fish) and the microbial loop (autotrophic bacteria-heterotrophic protozoans) and determined how the structure and function of the food web changed between time-periods. I use the food web descriptions to simulate the reestablishment of native deepwater bloater. I developed empirical models describing spatial variation in temperature and applied them to investigate predator temperature distributions, bioenergetic consequences of alewife diet and distribution shifts, and zooplankton productivity. Primary production declined as did the biomass and production of all species-groups except Chinook salmon. Total zooplankton production declined by approximately half with cyclopoid copepod production declining proportionately more. Zooplankton species richness and diversity were unaffected. Alewife adapted to low zooplankton production by consuming more Mysis, increasing their trophic level. The increased prey-size and exploitation of spatial heterogeneity in resource patches and temperature may have allowed alewife to maintain their growth efficiency. The trophic level also increased for smelt, adult sculpin, adult alewife and Chinook salmon. Phytoplankton grazing rates declined and predation pressure increased on Mysis, adult smelt and alewife, and decreased on protozoans. Resource to consumer trophic transfer efficiencies changed; increasing for protozoans, Mysis, Chinook salmon and other salmonines and decreasing for zooplankton, prey-fish and benthos. The changes suggest both bottom-up and top-down influences on food web structure. The direct trophic influences of invasive species on the offshore Lake Ontario food web were minor. Carbon flows to Mysis indicated an important, and changing ecological role for this species and we hypothesize that Mysis may have contributed to Diporeia declines. Simulations suggest that only a small reestablished bloater population, limited by Diporeia production, could be sustained.
64

Mass Balance Tracer Techniques for Integrating in situ Soil Ingestion Rates into Human and Ecological Risk Assessments

Doyle, James 12 January 2012 (has links)
Quantitative soil ingestion studies employing a mass balance tracer approach have been used to determine soil ingestion rate for use in human health risk assessments (HHRAs). Past studies have focused on soil ingestion in populations living in urban/suburban environments and the results have been highly variable. Moreover, there is a paucity of reliable quantitative soil ingestion data to support human health risk assessments of other lifestyles that may be predisposed to ingesting soil, such as indigenous populations following traditional lifestyles. Thus, the primary objective of the research was to determine if populations following lifestyles typical of traditional land use practices in rural or wilderness areas ingest more soil than populations living in urban or suburban environments. Further, the research investigated the use of alternative mass balance tracers, specifically isotopes of the 238U and 232Th decay series, to reduce soil ingestion estimate variability. Mass balance tracer methods were developed and validated in a pilot canine study, and methods using isotope tracers were adapted to permit quantification of sediment ingestion in the benthic fish Moxostoma macrolepidotum (Shorthead Redhorse Sucker). A pilot human soil ingestion study of 7 subjects from an Aboriginal community in British Columbia was conducted over a 3-week period. The mean soil ingestion rate calculated using the daily means of the 4 elemental tracers with the lowest food-to-soil ratios (i.e., Al, Ce, La, Si) was observed to be approximately 74 mg d-1 (standard deviation 91 mg d-1), The median soil ingestion rate was 60 mg d-1, and the 90th percentile was 196 mg d-1. These soil ingestion rate estimates are higher than those currently recommended for HHRAs of adults, and higher than those obtained in most previous studies of adults. However, the estimates are much lower than the earlier qualitative assessments for subsistence lifestyles (i.e., 330-400 mg d-1). The study results also demonstrated that isotopes of the 238U and 232Th decay series radionuclide are not reliable mass balance tracers for estimating soil ingestion in humans; however, they may be useful for quantifying soil and sediment ingestion in wildlife.
65

Mass balance analysis of phosphorous in Motala Ström River Basin : A focus on lake Roxen and Glan

Stärner, Nathalie January 2012 (has links)
Phosphorous (P) has been found to be the limiting nutrient in freshwater systems, directly affecting rates of planktonic growth. The P circulation is very complex, and its pathways through lake systems are difficult to determine. Motala Ström is the biggest watercourse in the south-east of Sweden and an important source of P to the Baltic Sea. The aim of this study is to conduct a P mass balance analysis of the lakes Roxen and Glan over a period of time. The analysis will also include a quality control of the concentrations data. The P concentration data used in this investigation were collected from the Motala Ström River Association, consisting of seasonal or monthly concentration data of Tot-P during the period 1960-2010. Daily water flow data used in this study were modelled by the Swedish Meteorological and Hydrological Institute (SMHI) using the S-HYPE model. P concentration deviations from monthly averages at each sampling station were calculated, followed by a seasonal Mann Kendall trend analysis. At five out of eight sampling stations, negative trends were detected, indicating decreasing concentrations. The exception was the outflow from lake Glan, Stångån and Finspångsån. Linear interpolation of P concentration data was performed to create daily data for the period 1980-2010. Following interpolation, daily transport values were calculated and summed up to annual values. Lake Roxen has acted as a source of P during the whole period 1980-2010, except for one year. Lake Glan has acted as a source during 22 of the 31 years. There is a tendency of Glan to become more of a source over the years, which is in line with the deviation observations, but variation between years makes it necessary to analyse also future data in order to establish any possible trend in P transports. Before construction of wastewater treatment plants, the lakes were certainly sinks of phosphorus. But at least for Roxen, the switch from sink to source was completed before 1980.
66

Effect of Brush Vegetation on Deep Drainage Using Chloride Mass Balance

Navarrete Ganchozo, Ronald J. 2009 December 1900 (has links)
Groundwater use is of fundamental importance to meet rapidly expanding urban, industrial, and agricultural water requirements, particularly in semiarid zones. To quantify the current rate of groundwater recharge is thus a prerequisite for efficient and sustainable groundwater resource management in these dry areas, where such resources are often the key to economic development. Increased groundwater recharge has been documented where native vegetation or forest/shrub land was converted to grassland or pasture, or where the land was cleared for agricultural purposes. The basic argument for increased recharge is that evapotranspiration, primarily interception and transpiration, is higher in shrublands than grasslands. Chloride mass balance (CMB) has been used to estimate ancient recharge, but recharge from recent land-use change has also been documented, specifically where vegetation has been altered and deep-rooted species replaced with shallow-rooted grasses. Chloride concentrations are inversely related to recharge rates: low Clconcentrations indicate high recharge rates as Cl- is leached from the system; high Cl concentrations indicate low recharge rates since Cl- accumulates as a result of evapotranspiration. The objectives were (1) to assess the hypothesis that removal of woody-shrub vegetation and replacement with grasses increases deep drainage, (2) to quantify the amount of deep drainage after land-use change, and (3) to provide science-based data for a better understanding of changing land-use impacts on deep drainage. Eight soils from five locations in the Central Rolling Red Plains near Abilene and Sweetwater were sampled. Each location consisted of a pair of similar soils with contrasting vegetative cover: shrubland and grassland. At each site three to five soil cores were taken as deep as possible and samples were taken by horizon, but horizons were split when their thickness exceeded 0.25 m. Soil Cl- profiles under shrubland at three sites showed that virtually no water escapes beyond the root zone. High Cl- concentrations and inventories reflect soil moisture fluxes that approached 0 mm yr-1 with depth. Evapotranspiration may be largely responsible for Cl- enrichment in those profiles. Surprisingly, soil moisture flux past 200 cm under juniper woodlands was the highest with 2.6 mm yr-1. Evapotranspirative Cl- enrichment in the upper 300 cm was not observed and may suggest a different water uptake mechanism for this plant community. Soil Cl- profiles showed increased recharge rates under grassland vegetation ecosystem. Estimated deep drainage past 200 cm of 0.1 to 1.3 mm yr-1 was observed. Low Cl- concentrations and inventories suggest a leaching environment that may be in response to changes in land use/land cover.
67

Spatial and temporal characteristics of C2-C15 hydrocarbons and receptor modeling in the air of urban Kaohsiung, Taiwan

Lai, Chia-hsiang 16 June 2004 (has links)
The concentrations of seventy-one hydrocarbons (HC) from C2 to C15 were measured simultaneously at two sites in Kaohsiung city in the morning (07-10), the afternoon (13-16), and the evening (18-21) on 14 days in spring 2003. Results show that the most abundant species of Kaohsiung¡¦s air is toluene (43.36-54.49 £gg m-3), followed by i-pentane, 1,2,4-trimethylbenzene, benzene, n-butane, propane and acetylene, in the range 10.36¡V17.11 £gg m-3. The concentrations of 14 halocarbons are in the range 0.25¡V4.57 £gg m-3. Alkanes (around 44.8%) represent the largest proportion of the total HC, followed by aromatics (35.1%), alkenes (15.5%) and halocarbons (5.4%). The afternoon HC concentrations are much lower than those in the morning and at night, due to relatively intense photochemical reaction and favorable dispersion conditions from noon to afternoon. Notable increases in daily HC concentrations are consistent with high temperature, and low HC concentrations on Sunday coincide with low traffic volume. Photochemical activity is investigated, and HC concentrations are found to decline as the NO2/NOx ratio increases. Correlation analyses imply that vehicle exhaust is the dominant source of atmospheric hydrocarbons in Kaohsiung. The profiles of traffic exhausts were also measured for 25 HC species during the morning and afternoon rush hours on four different days in all three traffic tunnels in Kaohsiung City. Results show that VOC concentrations increase with traffic flow rate, and emission profiles in the three tunnels are mostly in the range C2 ¡V C6. Besides the traffic conditions and vehicle type, the pattern of emissions in each tunnel was also influenced by other factors, such as vehicle age, nearby pollution sources, and the spatial or temporal variation of HC in the urban atmosphere. The ozone formation potential (OFP) in each tunnel was assessed based on the maximum incremental reactivities of the organic species, demonstrating that OFP increases with traffic flow rate. Vehicle distribution influences the contributions of organic group to OFP in a tunnel. Meanwhile, when ranked in descending order of contribution to OFP in all tunnels, the organic groups followed the sequence alkenes, aromatics, and alkanes. The possible source categories affecting the atmospheric HC species were further analyzed using factor analysis. Results showed that the major sources of ambient HC at the Nan-Chie and Hsiung-Kong sites are: vehicle exhaust, petrol/diesel exhaust, industrial processes (for example, plastic/rubber process), combustion exhaust, solvent fugitive or business/consume exhaust. Based on the results of factor analysis, source profiles (or fingerprints) were selected and receptor modeling was conducted based on chemical mass balance (CMB). Results of receptor modeling indicated that, at Nan-Chie site, vehicle exhaust (46.33% and 56.36%) represent the largest proportion of total HC, followed by industrial processes (29.63% and 22.37%) in the morning (07-10) and the evening (18-21), respectively; but were industrial process (40.39%) and solvent fugitive exhaust (30.61%) in the afternoon (13-16). Similarly at Hsiung-Kong site, vehicle exhaust (around 46.19% and 49.29%) represent the largest proportion of total HC, followed by industrial processes (23.19% and 26.11%) in the morning and evening, respectively; but were solvent fugitive exhaust (38.85%), vehicle exhaust (28.95%) and industrial process (25.19%) in the afternoon. It is evident that relatively low traffic volumes in the afternoon at both sites reduce the contribution of traffic exhaust to ambient HC.
68

Occurrence, Distribution And Sources Of Polychlorinated Biphenyls At Selected Industrial Sites In Turkey

Gedik, Kadir 01 June 2010 (has links) (PDF)
In this study, the occurrence and distribution of polychlorinated biphenyls (PCBs) were investigated via sampling studies conducted around a thermal power plant (Seyit&ouml / mer, K&uuml / tahya), a scrap metal yard (Kizilirmak, Kirikkale), transformer repair and maintenance facility (Lake Eymir, Ankara), and two organized industrial districts (izmit and Mersin), and 120 samples composed mainly of sediments were collected from those sites. Total PCBs ranged from not detected to 385 ng/g for all samples. Analysis of samples indicates enrichment of PCBs with special emphasis to sediments collected around the Seyit&ouml / mer thermal power plant. Congener specific results indicate domination of profiles by penta- and hexa-chlorobiphenyls. Overall, the PCB concentrations observed in sampling sites are comparable to the background levels of soil/sediments around the world. To identify relevant pollution sources, congener specific data were further evaluated in the subsequent process of source apportionment using Chemical Mass Balance (CMB) receptor model. A general overview of the source apportionment results indicate that equipments (transformers and capacitors) mainly used in the energy generation/transmission and high energy consuming industries as the major PCB sources. PCBs used in open applications were also predicted as sources depending on site characteristics. Overall, indications of contaminated sites are evident in a number of locations / yet, no major contamination is evident in any media according to the current relevant national regulatory actions. However, findings of this study suggest that, over expanded time exposure, threat to the environment and human health may be of concern.
69

Application Of Two Receptor Models For The Investigation Of Sites Contaminated With Polychlorinated Biphenyls: Positive Matrix Factorization And Chemical Mass Balance

Demircioglu, Filiz 01 June 2010 (has links) (PDF)
This study examines the application of two receptor models, namely Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB), on the investigation of sites contaminated with PCBs. Both models are typically used for apportionment of pollution sources in atmospheric pollution studies, however have gained popularity in the last decade on the investigation of PCBs in soil/sediments. The aim of the study is four-fold / (i) to identify the status of PCB pollution in Lake Eymir area via sampling and analysis of PCBs in collected soil/sediment samples, (ii) to modify the CMB model software in terms of efficiency and user-friendliness (iii) to apply the CMB model to Lake Eymir area PCB data for apportionment of the sources as well as to gather preliminary information regarding degradation of PCBs by considering the history of pollution in the area (iv) to explore the use of PMF for both source apportionment and investigation of fate of PCBs in the environment via use of Monte-Carlo simulated artificial data sets. Total PCB concentrations (Aroclor based) were found to be in the range of below detection limit to 76.3 ng/g dw with a median of. 1.7 ng/g dw for samples collected from the channel between Lake Mogan and Lake Eymir. Application of the CMB model yield contribution of highly chlorinated PCB mixtures (Aroclor 1254 and Aroclor 1260 / typically used in transformers) as sources. The modified CMB model software provided user more efficient and user friendly working environment. Two uncertainty equations, developed and existing in literature, were found to be effective for better resolution of sources by the PMF model.
70

Studies of the characteristics of atmospheric polycyclic aromatic hydrocarbons in Kaohsiung city and at rural sites in Central Taiwan

Wang, Hsin-Kai 12 May 2008 (has links)
The high-volume air sampling (PS-1) and micro-orifice uniformdeposit impactor (MOUDI) were used to measure the concentrations ofpolycyclic aromatic hydrocarbons (PAHs) in the atmosphere for fourseasons at Tuzo-Yin and Hsiung-Kong site in Kaohsiung city, in the airof a agricultural residue open burning area in Jhu-Shan and Sin-Gang siteduring the rice straw non-burning and burning periods, together with thesize distributions. Also, the receptor model was employed to determinethe potential sources of PAHs. The results show that the highest concentrations of PAHs occurred inwinter, being 143.9 ng/m3 and 182.9 ng/m3 at Tzuo-Yin and Hsiung-Kongsite, respectively; while the lowest concentrations of PAHs occurred insummer, being 81.4 ng/m3 and 95.2 ng/m3. The low-weight PAHs in thetwo sites were abundant in gaseous phase, being 43.8−96.7% and65.2−97.5% at Tzuo-Yin and Hsiung-Kong site, respectively. Meanwhile,the high-weight PAHs were almost present in particulate phase, being40.5−95.2% and 24.8−94.1 % at Tzuo-Yin and Hsiung-Kong site,respectively. The average PAHs concentrations were 330.04 and 567.81 ng/m3during the rice straw non-burning and burning period in Jhu-Shan site, theaverage PAHs concentrations were 427.16 and 571.80 ng/m3 during therice straw non-burning and burning period in Sin-Gang site, respectively,in the rice straw burning period, which were higher than those on thenon-burning days. The results of by CMB receptor modeling indicated that the major sources of pollution was exhaust emission (49.5−63.3%) in Tzuo-Yin site,and was burning source (49.1−63.7%) in Hsiung-Kong site in Kaohsiungcity. The results of APCA model analysis indicated that the major sourcesof pollution was mobile source (gasoline and diesel) were 66.5¡Ó8.0%during the rice straw non-burning period, and was mobile (gasoline) andrice straw non-burning source were 57.3¡Ó6.9% during the rice strawburning period in Jhu-Shan site in Central Taiwan. The results of APCAmodel analysis indicated that the major sources of pollution was mobile(gasoline) and plastics incinerator source were 54.3¡Ó6.4% during the ricestraw non-burning period, and was burning incense in temple, rice straw,mobile (gasoline and diesel) source were 50.7¡Ó4.6% during the rice strawburning period in Sin-Gang site in Central Taiwan.

Page generated in 0.0298 seconds