• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 6
  • 3
  • 1
  • Tagged with
  • 69
  • 69
  • 17
  • 16
  • 14
  • 14
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Energy and spectral efficiency optimization in multiuser massive MIMO Comunications systems. / Otimização da energia e da eficiência espectral em sistemas de comunicação multiusuário MIMO massivo.

Marinello Filho, José Carlos 27 August 2018 (has links)
Massive MIMO communication systems have been highlighted as the main technology for physical layer of next generation communication standards, like 5G. While conventional communication between BS and its covered users is performed in orthogonal time-frequency resources, the improved interuser interference mitigation capability provided by the large number of BS antennas enables the BS to communicate with several users in the same time-frequency resource. This better usage of available but scarce spectrum elevates the spectral efficiency to very appreciable levels, and has a similar effect on energy efficiency, since the transmit power is not increased. On the other hand, if the objective is to provide a target performance for the users, the required transmit power in both direct and reverse links can be made inversely proportional to the number of BS antennas employed. In this Doctoral Thesis, several important aspects of massive MIMO systems are systematically investigated aiming to improve their energy and spectral efficiencies. We can enumerate our main contributions as follows. Considering a cellular massive MIMO network, we proposed an optimized assignment policy of training sequences to the users, which is then combined with suitable power control algorithms. We have also investigated the adoption of alternative waveforms in this scenario, such as single-carrier transmission, in order to overcome the issues of conventional OFDM. Our contributions in this topic are to derive analytical performance expressions for a time-domain single-carrier equalizer taking advantage of the large number of BS antennas, and to evaluate and compare the total energy efficiency of OFDM versus single-carrier massive MIMO systems. Finally, considering crowded massive MIMO networks, composed by both human users as well as machine-type communication devices, we proposed an improved random access protocol aiming to decrease the average number of access attempts for the users and decreasing the probability of failed access attempts. / Sistemas de comunicação de múltiplas antenas (multiple-input multiple-output - MIMO) têm se destacado como a principal tecnologia para a camada física dos padrões de comunicação da próxima geração, como o 5G. Enquanto a comunicação convencional entre a estação base (base station - BS) e seus usuários atendidos é realizada em recursos ortogonais de tempo-frequência, a grande capacidade de redução da interferência interusuários possibilitada pelo grande número de antenas da BS habilita a BS a se comunicar com diversos usuários no mesmo recurso tempo-frequência. Este melhor uso do escasso espectro disponível eleva a eficiência espectral a níveis muito apreciáveis, e tem um efeito similar na eficiência energética, pois a potência de transmissão não é aumentada. Por outro lado, se o objetivo é fornecer um desempenho desejado para os usuários, a potência de transmissão necessária em ambos os enlaces direto e reverso pode ser feita inversamente proporcional ao número de antenas na BS. Nesta Tese de Doutorado, diversos aspectos importantes de sistemas MIMO massivo são sistematicamente investigados com o objetivo de melhorar suas eficiências energética e espectral. Pode-se enumerar as principais contribuições alcançadas como se segue. Considerando uma rede celular MIMO massivo, propõe-se uma política de atribuição de sequências de treinamento aos usuários otimizada, a qual é depois combinada com apropriados algoritmos de controle de potência. Também investiga-se a adoção neste cenário de formas de onda alternativas, tal como a transmissão de portadora única, visando superar as deficiências da convencional multiplexagem por divisão de portadoras ortogonais (orthogonal frequency-division multiplexing - OFDM). As principais contribuições obtidas neste tema são derivar expressões de desempenho analíticas para um equalizador de portadora única no domínio do tempo que aproveita o grande número de antenas na BS, e avaliar e comparar a eficiência energética total de sistemas MIMO massivo OFDM versus portadora única. Finalmente, considerando redes MIMO massivo sobrecarregadas, compostas por usuários humanos bem como dispositivos de comunicação do tipo máquina, propõe-se um protocolo de acesso aleatório melhorado visando diminuir o número médio de tentativas de acesso para os usuários e diminuir a probabilidade de falhas de tentativa de acesso.
52

Integrated access-backhaul for 5G wireless networks

Vu, K. (Kien) 03 May 2019 (has links)
Abstract With the unprecedented growth in mobile data traffic and network densification, the emerging fifth-generation (5G) wireless network warrants a paradigm shift with respect to system design and technological enablers. In this regard, the prime motivation of this thesis is to propose an integrated access-backhaul (IAB) framework to dynamically schedule users, while efficiently providing a wireless backhaul to dense small cells and mitigating interference. In addition, joint resource allocation and interference mitigation solutions are proposed for two-hop and multi-hop self-backhauled millimeter wave (mmWave) networks. The first contribution of this thesis focuses on a multi-user two-hop relay cellular system in which a massive antenna array enabled macro base station (BS) simultaneously provides high beamforming gains to outdoor users, and wireless backhauling to outdoor small cells. Moreover, a hierarchical interference mitigation scheme is applied to efficiently mitigate cross-tier and co-tier interference. In the second contribution, a multi-hop self-backhauled mmWave communication scenario is studied whereby a joint multi-hop multi-path selection and rate allocation framework is proposed to enable Gbps data rates with reliable communications. Using reinforcement learning techniques, a dynamic and efficient re-routing solution is proposed to cope with blockage and latency constraints. Finally, a risk-sensitive learning solution is leveraged to provide high-reliability and low-latency communications. In summary, the dissertation analyses key trade-offs between (i) capacity and latency, (ii) reliability and network density. Extensive simulation results were carried out to verify the performance gains of the proposed algorithms compared to several baselines and for different network settings. Key findings show significant improvements in terms of higher data rates, lower latency, and reliable communications with some trade-offs. / Tiivistelmä Liikkuvan dataliikenteen ennennäkemättömän kasvun ja verkkojen tihentymisen seurauksena pian käyttöön tulevien viidennen sukupolven (5G) langattomien verkkojen järjestelmäsuunnittelua ja teknologisten mahdollistajien käyttöä on täytynyt lähestyä kokonaan uudesta näkökulmasta. Niinpä tämän väitöstyön johtavana ajatuksena on ehdottaa integroitua verkkoon pääsyn ja runkoverkkoyhteyden muodostamismallia, jossa käyttäjät resursoidaan dynaamisesti ja samalla muodostetaan tehokkaat runkoverkkoyhteydet piensoluille. Tätä varten tutkitaan resurssiallokaation ja häiriöiden lieventämisen yhteisratkaisuja, jotka tukevat kahden tai useamman hypyn yhteyksiä ja samanaikaista runkoverkkoyhteyden luomista millimetriaaltoalueen verkoissa. Työn alkuosa keskittyy usean käyttäjän välitinavusteiseen kahden hypyn solukkoverkkoon, jossa makrotukiasemassa käytetään suurta antenniryhmää muodostamaan samanaikaisesti suuren vahvistuksen antennikeiloja käyttäjälinkeille ja langattomalle runkoyhteysosuudelle. Lisäksi sovelletaan hierarkkista häiriönvaimennusmenetelmää saman kerroksen ja kerrosten välisen häiriön tehokkaaseen vähentämiseen. Työn seuraavassa osassa arvioidaan usean hypyn runkoverkkoyhteyden muodostuksen tutkimusongelmaa millimetrialueen kommunikaatiossa kehittämällä yhdistetty menetelmä usean hypyn monipolkuvalinnalle ja tiedonsiirtoresurssien allokoinnille. Tällä tähdätään gigabittiluokan datanopeuksiin ja luotettavaan tietoliikenteeseen millimetrialueella. Vahvistavan oppimisen tekniikan avulla esitellään dynaaminen ja tehokas uudelleenreitityskonsepti toimimaan esto- ja viiverajoitusten kanssa. Lopuksi hyödynnetään riskisensitiivistä oppimista ja antennidiversiteettitekniikoita suuren luotettavuuden ja pienen latenssin saavuttamiseksi millimetrialueen tiedonsiirrossa. Näiden avulla analysoidaan kaupankäyntiä esimerkiksi (i) kapasiteetin ja latenssin sekä (ii) luotettavuuden ja verkon tiheyden/kuormituksen välillä. Mittavien suoritettujen simulointien avulla osoitetaan ehdotettujen algoritmien suorituskykyedut suhteessa tunnettuihin verrokkeihin useissa eri skenaarioissa. Tulosten perusteella saavutetaan merkittäviä kustannussäästöjä infrastruktuurin ja runkoverkon osalta sekä päästään suuriin datanopeuksiin ja parannuksiin pienen latenssin luotettavassa tietoliikenteessä.
53

Energy and spectral efficiency optimization in multiuser massive MIMO Comunications systems. / Otimização da energia e da eficiência espectral em sistemas de comunicação multiusuário MIMO massivo.

José Carlos Marinello Filho 27 August 2018 (has links)
Massive MIMO communication systems have been highlighted as the main technology for physical layer of next generation communication standards, like 5G. While conventional communication between BS and its covered users is performed in orthogonal time-frequency resources, the improved interuser interference mitigation capability provided by the large number of BS antennas enables the BS to communicate with several users in the same time-frequency resource. This better usage of available but scarce spectrum elevates the spectral efficiency to very appreciable levels, and has a similar effect on energy efficiency, since the transmit power is not increased. On the other hand, if the objective is to provide a target performance for the users, the required transmit power in both direct and reverse links can be made inversely proportional to the number of BS antennas employed. In this Doctoral Thesis, several important aspects of massive MIMO systems are systematically investigated aiming to improve their energy and spectral efficiencies. We can enumerate our main contributions as follows. Considering a cellular massive MIMO network, we proposed an optimized assignment policy of training sequences to the users, which is then combined with suitable power control algorithms. We have also investigated the adoption of alternative waveforms in this scenario, such as single-carrier transmission, in order to overcome the issues of conventional OFDM. Our contributions in this topic are to derive analytical performance expressions for a time-domain single-carrier equalizer taking advantage of the large number of BS antennas, and to evaluate and compare the total energy efficiency of OFDM versus single-carrier massive MIMO systems. Finally, considering crowded massive MIMO networks, composed by both human users as well as machine-type communication devices, we proposed an improved random access protocol aiming to decrease the average number of access attempts for the users and decreasing the probability of failed access attempts. / Sistemas de comunicação de múltiplas antenas (multiple-input multiple-output - MIMO) têm se destacado como a principal tecnologia para a camada física dos padrões de comunicação da próxima geração, como o 5G. Enquanto a comunicação convencional entre a estação base (base station - BS) e seus usuários atendidos é realizada em recursos ortogonais de tempo-frequência, a grande capacidade de redução da interferência interusuários possibilitada pelo grande número de antenas da BS habilita a BS a se comunicar com diversos usuários no mesmo recurso tempo-frequência. Este melhor uso do escasso espectro disponível eleva a eficiência espectral a níveis muito apreciáveis, e tem um efeito similar na eficiência energética, pois a potência de transmissão não é aumentada. Por outro lado, se o objetivo é fornecer um desempenho desejado para os usuários, a potência de transmissão necessária em ambos os enlaces direto e reverso pode ser feita inversamente proporcional ao número de antenas na BS. Nesta Tese de Doutorado, diversos aspectos importantes de sistemas MIMO massivo são sistematicamente investigados com o objetivo de melhorar suas eficiências energética e espectral. Pode-se enumerar as principais contribuições alcançadas como se segue. Considerando uma rede celular MIMO massivo, propõe-se uma política de atribuição de sequências de treinamento aos usuários otimizada, a qual é depois combinada com apropriados algoritmos de controle de potência. Também investiga-se a adoção neste cenário de formas de onda alternativas, tal como a transmissão de portadora única, visando superar as deficiências da convencional multiplexagem por divisão de portadoras ortogonais (orthogonal frequency-division multiplexing - OFDM). As principais contribuições obtidas neste tema são derivar expressões de desempenho analíticas para um equalizador de portadora única no domínio do tempo que aproveita o grande número de antenas na BS, e avaliar e comparar a eficiência energética total de sistemas MIMO massivo OFDM versus portadora única. Finalmente, considerando redes MIMO massivo sobrecarregadas, compostas por usuários humanos bem como dispositivos de comunicação do tipo máquina, propõe-se um protocolo de acesso aleatório melhorado visando diminuir o número médio de tentativas de acesso para os usuários e diminuir a probabilidade de falhas de tentativa de acesso.
54

Ultra Dense Networks Deployment for beyond 2020 Technologies

Giménez Colás, Sonia 01 September 2017 (has links)
A new communication paradigm is foreseen for beyond 2020 society, due to the emergence of new broadband services and the Internet of Things era. The set of requirements imposed by these new applications is large and diverse, aiming to provide a ubiquitous broadband connectivity. Research community has been working in the last decade towards the definition of the 5G mobile wireless networks that will provide the proper mechanisms to reach these challenging requirements. In this framework, three key research directions have been identified for the improvement of capacity in 5G: the increase of the spectral efficiency by means of, for example, the use of massive MIMO technology, the use of larger amounts of spectrum by utilizing the millimeter wave band, and the network densification by deploying more base stations per unit area. This dissertation addresses densification as the main enabler for the broadband and massive connectivity required in future 5G networks. To this aim, this Thesis focuses on the study of the UDN. In particular, a set of technology enablers that can lead UDN to achieve their maximum efficiency and performance are investigated, namely, the use of higher frequency bands for the benefit of larger bandwidths, the use of massive MIMO with distributed antenna systems, and the use of distributed radio resource management techniques for the inter-cell interference coordination. Firstly, this Thesis analyzes whether there exists a fundamental performance limit related with densification in cellular networks. To this end, the UDN performance is evaluated by means of an analytical model consisting of a 1-dimensional network deployment with equally spaced BS. The inter-BS distance is decreased until reaching the limit of densification when this distance approaches 0. The achievable rates in networks with different inter-BS distances are analyzed for several levels of transmission power availability, and for various types of cooperation among cells. Moreover, UDN performance is studied in conjunction with the use of a massive number of antennas and larger amounts of spectrum. In particular, the performance of hybrid beamforming and precoding MIMO schemes are assessed in both indoor and outdoor scenarios with multiple cells and users, working in the mmW frequency band. On the one hand, beamforming schemes using the full-connected hybrid architecture are analyzed in BS with limited number of RF chains, identifying the strengths and weaknesses of these schemes in a dense-urban scenario. On the other hand, the performance of different indoor deployment strategies using HP in the mmW band is evaluated, focusing on the use of DAS. More specifically, a DHP suitable for DAS is proposed, comparing its performance with that of HP in other indoor deployment strategies. Lastly, the presence of practical limitations and hardware impairments in the use of hybrid architectures is also investigated. Finally, the investigation of UDN is completed with the study of their main limitation, which is the increasing inter-cell interference in the network. In order to tackle this problem, an eICIC scheduling algorithm based on resource partitioning techniques is proposed. Its performance is evaluated and compared to other scheduling algorithms under several degrees of network densification. After the completion of this study, the potential of UDN to reach the capacity requirements of 5G networks is confirmed. Nevertheless, without the use of larger portions of spectrum, a proper interference management and the use of a massive number of antennas, densification could turn into a serious problem for mobile operators. Performance evaluation results show large system capacity gains with the use of massive MIMO techniques in UDN, and even greater when the antennas are distributed. Furthermore, the application of ICIC techniques reveals that, besides the increase in system capacity, it brings significant energy savings to UDNs. / A partir del año 2020 se prevé que un nuevo paradigma de comunicación surja en la sociedad, debido a la aparición de nuevos servicios y la era del Internet de las cosas. El conjunto de requisitos impuesto por estas nuevas aplicaciones es muy amplio y diverso, y tiene como principal objetivo proporcionar conectividad de banda ancha y universal. En las últimas décadas, la comunidad científica ha estado trabajando en la definición de la 5G de redes móviles que brindará los mecanismos necesarios para garantizar estos requisitos. En este marco, se han identificado tres mecanismos clave para conseguir el necesario incremento de capacidad de la red: el aumento de la eficiencia espectral a través de, por ejemplo, el uso de tecnologías MIMO masivas, la utilización de mayores porciones del espectro en frecuencia y la densificación de la red mediante el despliegue de más estaciones base por área. Esta Tesis doctoral aborda la densificación como el principal mecanismo que permitirá la conectividad de banda ancha y universal requerida en la 5G, centrándose en el estudio de las Redes Ultra Densas o UDNs. En concreto, se analiza el conjunto de tecnologías habilitantes que pueden llevar a las UDNs a obtener su máxima eficiencia y prestaciones, incluyendo el uso de altas frecuencias para el aprovechamiento de mayores anchos de banda, la utilización de MIMO masivo con sistemas de antenas distribuidas y el uso de técnicas de reparto de recursos distribuidas para la coordinación de interferencias. En primer lugar, se analiza si existe un límite fundamental en la mejora de las prestaciones en relación a la densificación. Con este fin, las prestaciones de las UDNs se evalúan utilizando un modelo analítico de red unidimensional con BSs equiespaciadas, en el que la distancia entre BSs se disminuye hasta alcanzar el límite de densificación cuando ésta se aproxima a 0. Las tasas alcanzables en redes con distintas distancias entre BSs son analizadas, considerando distintos niveles de potencia disponible en la red y varios grados de cooperación entre celdas. Además, el comportamiento de las UDNs se estudia junto al uso masivo de antenas y la utilización de anchos de banda mayores. Más concretamente, las prestaciones de ciertas técnicas híbridas MIMO de precodificación y beamforming se examinan en la banda milimétrica. Por una parte, se analizan esquemas de beamforming en BSs con arquitectura híbrida en función de la disponibilidad de cadenas de radiofrecuencia en escenarios exteriores. Por otra parte, se evalúan las prestaciones de ciertos esquemas de precodificación híbrida en escenarios interiores, utilizando distintos despliegues y centrando la atención en los sistemas de antenas distribuidos o DAS. Además, se propone un algoritmo de precodificación híbrida específico para DAS, y se evalúan y comparan sus prestaciones con las de otros algoritmos de precodificación utilizados. Por último, se investiga el impacto en las prestaciones de ciertas limitaciones prácticas y deficiencias introducidas por el uso de dispositivos no ideales. Finalmente, el estudio de las UDNs se completa con el análisis de su principal limitación, el nivel creciente de interferencia en la red. Para ello, se propone un algoritmo de control de interferencias basado en la partición de recursos. Sus prestaciones son evaluadas y comparadas con las de otras técnicas de asignación de recursos. Tras este estudio, se puede afirmar que las UDNs tienen gran potencial para la consecución de los requisitos de la 5G. Sin embargo, sin el uso conjunto de mayores porciones del espectro, adecuadas técnicas de control de la interferencia y el uso masivo de antenas, las UDNs pueden convertirse en serios obstáculos para los operadores móviles. Los resultados de la evaluación de prestaciones de estas tecnologías confirman el gran aumento de la capacidad de las redes mediante el uso masivo de antenas y la introducción de mecanismos de I / A partir de l'any 2020 es preveu un nou paradigma de comunicació en la societat, degut a l'aparició de nous serveis i la era de la Internet de les coses. El conjunt de requeriments imposat per aquestes noves aplicacions és ampli i divers, i té com a principal objectiu proporcionar connectivitat universal i de banda ampla. En les últimes dècades, la comunitat científica ha estat treballant en la definició de la 5G, que proveirà els mecanismes necessaris per a garantir aquests exigents requeriments. En aquest marc, s'han identificat tres mecanismes claus per a aconseguir l'increment necessari en la capacitat: l'augment de l'eficiència espectral a través de, per exemple, l'ús de tecnologies MIMO massives, la utilització de majors porcions de l'espectre i la densificació mitjançant el desplegament de més estacions base per àrea. Aquesta Tesi aborda la densificació com a principal mecanisme que permetrà la connectivitat de banda ampla i universal requerida en la 5G, centrant-se en l' estudi de les xarxes ultra denses (UDNs). Concretament, el conjunt de tecnologies que poden dur a les UDNs a la seua màxima eficiència i prestacions és analitzat, incloent l'ús d'altes freqüències per a l'aprofitament de majors amplàries de banda, la utilització de MIMO massiu amb sistemes d'antenes distribuïdes i l'ús de tècniques distribuïdes de repartiment de recursos per a la coordinació de la interferència. En primer lloc, aquesta Tesi analitza si existeix un límit fonamental en les prestacions en relació a la densificació. Per això, les prestacions de les UDNs s'avaluen utilitzant un model analític unidimensional amb estacions base equidistants, en les quals la distància entre estacions base es redueix fins assolir el límit de densificació quan aquesta distància s'aproxima a 0. Les taxes assolibles en xarxes amb diferents distàncies entre estacions base s'analitzen considerant diferents nivells de potència i varis graus de cooperació entre cel·les. A més, el comportament de les UDNs s'estudia conjuntament amb l'ús massiu d'antenes i la utilització de majors amplàries de banda. Més concretament, les prestacions de certes tècniques híbrides MIMO de precodificació i beamforming s'examinen en la banda mil·limètrica. D'una banda, els esquemes de beamforming aplicats a estacions base amb arquitectures híbrides és analitzat amb disponibilitat limitada de cadenes de radiofreqüència a un escenari urbà dens. D'altra banda, s'avaluen les prestacions de certs esquemes de precodificació híbrida en escenaris d'interior, utilitzant diferents estratègies de desplegament i centrant l'atenció en els sistemes d' antenes distribuïdes (DAS). A més, es proposa un algoritme de precodificació híbrida distribuïda per a DAS, i s'avaluen i comparen les seues prestacions amb les de altres algoritmes. Per últim, s'investiga l'impacte de les limitacions pràctiques i altres deficiències introduïdes per l'ús de dispositius no ideals en les prestacions de tots els esquemes anteriors. Finalment, l' estudi de les UDNs es completa amb l'anàlisi de la seua principal limitació, el nivell creixent d'interferència entre cel·les. Per tractar aquest problema, es proposa un algoritme de control d'interferències basat en la partició de recursos. Les prestacions de l'algoritme proposat s'avaluen i comparen amb les d'altres tècniques d'assignació de recursos. Una vegada completat aquest estudi, es pot afirmar que les UDNs tenen un gran potencial per aconseguir els ambiciosos requeriments plantejats per a la 5G. Tanmateix, sense l'ús conjunt de majors amplàries de banda, apropiades tècniques de control de la interferència i l'ús massiu d'antenes, les UDNs poden convertir-se en seriosos obstacles per als operadors mòbils. Els resultats de l'avaluació de prestacions d' aquestes tecnologies confirmen el gran augment de la capacitat de les xarxes obtingut mitjançant l'ús massiu d'antenes i la introducci / Giménez Colás, S. (2017). Ultra Dense Networks Deployment for beyond 2020 Technologies [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86204 / TESIS
55

New Stochastic Geometry Approaches to the Modeling and Analysis of Low and High Frequency Wireless Communication Networks / Nouvelles approches de la géométrie stochastique à la modélisation et à l'analyse de réseaux de communication sans fil à basse et haute fréquence

Xi, Xiaojun 19 December 2019 (has links)
Dans cette thèse, nous avons développé de nouveaux cadres d'analyse pour analyser et optimiser les futurs réseaux cellulaires à l'aide de la géométrie stochastique et des processus ponctuels. Cette thèse fournit quatre contributions techniques principales.Nous analysons d’abord les réseaux émergents capables de communiquer en utilisant la lumière plutôt que les ondes radio. Dans ce contexte, nous proposons un cadre analytique innovant qui nous permet d’estimer la probabilité de couverture et le débit moyen des réseaux distribués dans l’espace, qui sont utilisés pour mieux comprendre l’optimisation du système.Deuxièmement, nous proposons une méthodologie innovante pour modéliser des réseaux cellulaires spatialement corrélés en utilisant des processus ponctuels non homogènes. L'approche proposée est testée par rapport au déploiement pratique de réseaux cellulaires et s'est révélée pratique et précise. Il est appliqué à l'analyse des réseaux de communication à lumière visible et l'impact de la corrélation spatiale est étudié.Troisièmement, nous abordons le problème ouvert de la modélisation de réseaux cellulaires MIMO massifs. Nous étudions les réseaux cellulaires montants et descendants et proposons de nouvelles limites supérieures et inférieures pour l'efficacité spectrale moyenne, ce qui nous permet d'identifier le nombre optimal d'utilisateurs à desservir dans chaque cellule du réseau et l'impact de plusieurs paramètres clés du système.Quatrièmement, nous présentons et analysons les performances d'un nouvel algorithme de planification prenant en compte les interférences pour une application sur la liaison montante des réseaux cellulaires. L’approche proposée consiste à assourdir certains utilisateurs afin de réduire le niveau d’interférence. La performance réalisable et l'équité utilisateur de l'approche proposée sont discutées et quantifiées analytiquement. / In this thesis, we have developed new analytical frameworks for analyzing and optimizing future cellular networks with the aid of stochastic geometry and point processes. This thesis provides four main technical contributions.First, we analyze emerging networks that can communicate by using light instead of radio waves. In this context, we propose an innovative analytical framework that allows us to estimate the coverage probability and the average rate of spatially distributed networks, which are used to gain insight for system optimization.Second, we propose an innovative methodology for modeling spatially correlated cellular networks by using inhomogeneous point processes. The proposed approach is tested against practical deployment of cellular networks and found to be tractable and accurate. It is applied to the analysis of visible light communication networks, and the impact of spatial correlation is studied.Third, we tackle the open problem of modeling Massive MIMO cellular networks. We study uplink and downlink cellular networks and propose new upper and lower bounds for the average spectral efficiency, which allow us to identify the optimal number of user to serve in each cell of the network and the impact of several key system parameters.Fourth, we introduce and analyze the performance of a new interference-aware scheduling algorithm for application to the uplink of cellular networks. The proposed approach is based on muting some users in order to reduce the level of interference. The achievable performance and the user-fairness of the proposed approach are discussed and quantified analytically.
56

Channel Reconstruction for High-Rank User Equipment

Zhao, Yu January 2019 (has links)
In a 5 Generation massive Multiple Input Multiple Output radio network, the Channel State Information is playing a central role in the algorithm design and system evaluation. However, Acquisition of Channel State Information consumes system resources (e.g. time, frequency) which in turn decrease the link utilization, i.e. fewer resources left for actual data transmission. This problem is more apparent in a scenario when User Equipment terminals have multi-antennas and it would be beneficial to obtain Channel State Information between Base Station and different User Equipment antennas e.g. for purpose of high rank (number of streams) transmission towards this User Equipment. Typically, in current industrial implementations, in order to not waste system resources, Channel State Information is obtained for only one of the User Equipment antennas which then limits the downlink transmission rank to 1. Hence, we purpose a method based on Deep learning technique. In this paper, multi-layer perception and convolutional neural network are implemented. Data are generated by MATLAB simulator using the parameters provided by Huawei Technologies Co., Ltd. Finally, the model proposed by this project provides the best performance compared to the baseline algorithms. / I ett 5-generationsmassivt massivt multipel-inmatningsradio-nätverk spelar kanalstatens information en central roll i algoritmdesignen och systemutvärderingen. Förvärv av Channel State Information konsumerar emellertid systemresurser (t.ex. tid, frekvens) som i sin tur minskar länkanvändningen, dvs färre resurser kvar för faktisk dataöverföring. Detta problem är mer uppenbart i ett scenario när användarutrustningsterminaler har flera antenner och det skulle vara fördelaktigt att erhålla kanalstatusinformation mellan basstationen och olika användarutrustningsantenner, t.ex. för överföring av hög rang (antal strömmar) till denna användarutrustning. I nuvarande industriella implementeringar erhålls kanalstatusinformation för endast en av användarutrustningens antenner för att inte slösa bort systemresurser, vilket sedan begränsar överföringsrankningen för nedlänkning till 1. Därför syftar vi på en metod baserad på Deep learning-teknik. I detta dokument implementeras flerskiktsuppfattning och inblandat neuralt nätverk. Data genereras av MATLAB-simulator med hjälp av parametrarna som tillhandahålls av Huawei Technologies Co., Ltd. Slutligen ger modellen som föreslås av detta projekt bästa prestanda jämfört med baslinjealgoritmerna.
57

A Conjugate Residual Solver with Kernel Fusion for massive MIMO Detection

Broumas, Ioannis January 2023 (has links)
This thesis presents a comparison of a GPU implementation of the Conjugate Residual method as a sequence of generic library kernels against implementations ofthe method with custom kernels to expose the performance gains of a keyoptimization strategy, kernel fusion, for memory-bound operations which is to makeefficient reuse of the processed data. For massive MIMO the iterative solver is to be employed at the linear detection stageto overcome the computational bottleneck of the matrix inversion required in theequalization process, which is 𝒪(𝑛3) for direct solvers. A detailed analysis of howone more of the Krylov subspace methods that is feasible for massive MIMO can beimplemented on a GPU as a unified kernel is given. Further, to show that kernel fusion can improve the execution performance not onlywhen the input data is large matrices-vectors as in scientific computing but also inthe case of massive MIMO and possibly similar cases where the input data is a largenumber of small matrices-vectors that must be processed in parallel.In more details, focusing on the small number of iterations required for the solver toachieve a close enough approximation of the exact solution in the case of massiveMIMO, and the case where the number of users matches the size of a warp, twodifferent approaches that allow to fully unroll the algorithm and gradually fuse allthe separate kernels into a single, until reaching a top-down hardcodedimplementation are proposed and tested. Targeting to overcome the algorithms computational burden which is the matrixvector product, further optimization techniques such as two ways to utilize the faston-chip memories, preloading the matrix in shared memory and preloading thevector in shared memory, are tested and proposed to achieve high efficiency andhigh parallelism.
58

Modulation Division for Multiuser Wireless Communication Networks

Dong, Zheng January 2016 (has links)
This thesis considers the modulation division based on the concept of uniquely factorable constellation pair (UFCP) and uniquely decodable constellation group (UDCG) in multiuser wireless communication networks. We first consider a two-hop relay network consisting of two single-antenna users and a two-antenna relay node, for which a novel distributed concatenated Alamouti code is devised. This new design allows the source and relay nodes to transmit their own information to the destination node concurrently at the symbol level with the aid of the UFCP generated from both PSK and square QAM constellations as well as by jointly processing the noisy signals received at the relay node. Moreover, an asymptotic symbol error probability (SEP) formula is derived for the ML receiver, showing that the maximum diversity gain function is achieved, which is proportional to $\ln \mathtt{SNR}/\mathtt{SNR}^2$. Then, we concentrate on the point-to-point correlated multiple-input and multiple-output (MIMO) communication systems where full knowledge of channel state information (CSI) is available at the receiver and only the first- and second-order statistics of the channels are available at the transmitter. When the number of antenna elements of both ends goes to infinity while keeping their ratio constant, the asymptotic SEP analysis is carried out for either optimally precoded or uniformly precoded correlated large MIMO fading channels using the zero-forcing (ZF) detector with equally likely PAM, PSK or square QAM constellations. For such systems, we reveal some very nice structures which inspire us to explore two very useful mathematical tools (i.e., the Szego's theorem on large Hermitian Toeplitz matrices and the well-known limit: $\lim_{x\to\infty}(1+1/x)^x=e$), for the systematic study of asymptotic behaviors on their error performance. This new approach enables us to attain a very simple expression for the SEP limit as the number of the available antenna elements goes to infinity. In what follows, the problem of precoder design using a zero-forcing decision-feedback (ZF-DF) detector is also addressed. For such a MIMO system, our principal goal is to efficiently design an optimal precoder that minimizes the asymptotic SEP of the ZF-DF detector under a perfect decision feedback. By fully taking advantage of the product majorization relationship among eigenvalues, singular-values and Cholesky values of the precoded channel matrix parameters, a necessary condition for the optimal solution to satisfy is first developed and then the structure of the optimal solution is characterized. With these results, the original non-convex problem is reformulated into a convex one that can be efficiently solved by using an interior-point method. In addition, by scaling up the antenna array size of both terminals without bound for such a network, we propose a novel method as we did for the ZF receiver scenario to analyze the asymptotic SEP performance of an equal-diagonal QRS precoded large MIMO system when employing an abstract Toeplitz correlation model for the transmitter antenna array. This new approach has a simple expression with a fast convergence rate and thus, is efficient and effective for error performance evaluation. For multiuser communication networks, we first consider a discrete-time multiple-input single-output (MISO) Gaussian broadcast channel (BC) where perfect CSI is available at both the transmitter and all the receivers. We propose a flexible and explicit design of a uniquely decomposable constellation group (UDCG) based on PAM and rectangular QAM constellations. With this new concept, a modulation division (MD) transmission scheme is developed for the considered MISO BC. The proposed MD scheme enables each receiver to uniquely and efficiently recover their desired signals from the superposition of mutually interfering cochannel signals in the absence of noise. Using max-min fairness as a design criterion, the optimal transmitter beamforming problem is solved in a closed-form for two-user MISO BC. Then, for a general case with more than two receivers, a user-grouping based beamforming scheme is developed, where the grouping method, beamforming vector design and power allocation problems are addressed by employing weighted max-min fairness. Then, we consider an uplink massive single-input and multiple-output (SIMO) network consisting of a base station (BS) and several single-antenna users. To recover the transmitted signal matrix of all the users when the antenna array size is large, a novel multi-user space-time modulation (MUSTM) scheme is proposed for the considered network based on the explicit construction of QAM uniquely-decomposable constellation groups (QAM-UDCGs). In addition, we also develop a sub-constellation allocation method at the transmitter side to ensure the signal matrix is always invertible. In the meanwhile, an efficient training correlation receiver (TCR) is proposed which calculates the correlation between the received sum training signal vector and the sum information carrying vector. Moreover, the optimal power allocation problems are addressed by maximizing the coding gain or minimizing the average SEP of the received sum signal under both average and peak power constraints on each user. The proposed transmission scheme not only allows the transmitted signals with strong mutual interference to be decoded by a simple TCR but it also enables the CSI of all the users to be estimated within a minimum number of time slots equal to that of the users. Comprehensive computer simulations are carried out to verify the effectiveness of the proposed uniquely decomposable space-time modulation method in various network topologies and configurations. Our modulation division method will be one of the promising technologies for the fifth generation (5G) communication systems. / Dissertation / Doctor of Philosophy (PhD)
59

Study of Feasible Cell-Free Massive MIMO Systems in Realistic Indoor Scenarios

Prado Alvarez, Danaisy 14 December 2023 (has links)
[ES] El uso masivo de las telecomunicaciones exige redes de mayor capacidad. Esta capacidad puede incrementarse de las siguientes maneras: aumentando el número de antenas, el ancho de banda, la eficiencia espectral o una combinación de ellas. En respuesta a esto, han surgido los sistemas masivos MIMO sin celdas. Estos sistemas pretenden ofrecer un servicio ubicuo y fiable, apoyándose en un número masivo de antenas y adaptando la red a las necesidades de los usuarios en cada momento. Se han estudiado sistemas MIMO masivos sin celdas tanto para frecuencias inferiores a 6 GHz como en la banda mmW, demostrando ser una buena alternativa a las celdas pequeñas. Sin embargo, hay muchas cuestiones que todavía requieren más estudio. Esta Tesis aborda las cuestiones relativas a los despliegues masivos MIMO sin celdas en términos de escalabilidad, consumo de energía, modelado realista de los escenarios de despliegue y diseño de precodificadores para dichos escenarios en la banda mmW. Los sistemas masivos sin celdas en su forma canónica consideran que todos los APs están conectados a una única CPU y que todos ellos sirven a todos los UEs al mismo tiempo. Sin embargo, en la práctica, tal sistema no es factible debido a temas de escalabilidad. Por ello, en esta Tesis se estudian y proponen diferentes soluciones de agrupación que alivian la carga tanto de cada AP individual como de la CPUs, ya que la carga total de procesamiento se divide entre ellas. Las soluciones propuestas muestran un mejor rendimiento que la solución del estado del arte estudiada para todos los tamaños de agrupación considerados e independientemente del número de UEs en el escenario. Tras las consideraciones sobre la topología lógica de la red, esta Tesis analiza el impacto en el rendimiento de la red de diferentes configuraciones de topologías físicas. En concreto, se estudia el modelado del consumo de energía considerando front-haul totalmente dedicado, híbrido y totalmente en serie. En este sentido, se sugieren algunas modificaciones al modelo tradicional de consumo de energía para obtener resultados más precisos cuando se analizan entornos en serie. A partir de los resultados obtenidos, se destaca la importancia de aplicar las modificaciones propuestas que consideran el ahorro de energía debido a las conexiones serie en un despliegue de MIMO masivo sin celdas donde cada AP transmite la misma información (excepto por los coeficientes de precodificación). Por otro lado, aunque en la banda milimétrica se dispone de mayores anchos de banda, el uso de estas frecuencias conlleva ciertos retos. Uno de estos retos es el modelado del canal radioeléctrico, ya que al trabajar con longitudes de onda del orden de decenas de milímetros cualquier objeto o rugosidad del mismo puede afectar a la propagación de la onda. En este sentido, esta Tesis, en primer lugar, propone algunas adaptaciones al modelo de bloqueo del cuerpo humano del 3GPP. Los resultados obtenidos tras las modificaciones se acercan más a los valores de las mediciones reales, lo que hace que el modelo adaptado sea más preciso para la consideración del bloqueo corporal en mmW. En segundo lugar, esta Tesis presenta una herramienta de simulación de radiocanales basada en el trazado de rayos. Se han obtenido resultados de pérdidas de trayecto para un escenario de interior que se aproximan notablemente a las medidas reales. Asimismo, los resultados obtenidos muestran que cuando no se modelan correctamente las características electromagnéticas de los materiales o no se tiene en cuenta el mobiliario en un escenario de interior, los resultados pueden diferir considerablemente de las medidas reales. Por último, esta Tesis aborda el diseño de precodificadores en sistemas MIMO masivos sin celdas en un escenario realista. Para ello, se considera un escenario industrial con requerimientos de potencia específicos. En particular, se resuelve un problema de optimización con diferentes restricciones de potencia por antena. / [CA] L'ús massiu de les telecomunicacions exigeix xarxes de major capacitat. Aquesta capacitat pot incrementar-se de les següents maneres: augmentant el nombre d'antenes, l'amplada de banda, l'eficiència espectral o una combinació d'elles. En resposta a això, han sorgit els sistemes massius MIMO sense cel·les. Aquests sistemes pretenen oferir un servei ubic i fiable, secundant-se en un nombre massiu d'antenes i adaptant la xarxa a les necessitats dels usuaris a cada moment. S'han estudiat sistemes MIMO massius sense cel·les tant per a freqüències inferiors a 6 GHz com en la banda mmW, demostrant ser una bona alternativa a les cel·les xicotetes. No obstant això, hi ha moltes qüestions que encara requereixen més estudi. Aquesta Tesi aborda les qüestions relatives als desplegaments massius MIMO sense cel·les en termes d'escalabilitat, consum d'energia, modelatge realista dels escenaris de desplegament i disseny de precodificadors per a aquests escenaris en la banda mmW. Els sistemes massius sense cel·les en la seua forma canònica consideren que tots els APs estan connectats a una única CPU i que tots ells serveixen a tots els UEs al mateix temps. No obstant això, en la pràctica, tal sistema no és factible a causa de temes d'escalabilitat. Per això, en aquesta Tesi s'estudien i proposen diferents solucions d'agrupació que alleugen la càrrega tant de cada AP individual com de la CPUs, ja que la càrrega total de processament es divideix entre elles. Les solucions proposades mostren un millor rendiment que la solució de l'estat de l'art estudiada per a totes les grandàries d'agrupació considerats i independentment del número de UEs en l'escenari. Després de les consideracions sobre la topologia lògica de la xarxa, aquesta Tesi analitza l'impacte en el rendiment de la xarxa de diferents configuracions de topologies físiques. En concret, s'estudia el modelatge del consum d'energia considerant front-haul totalment dedicat, híbrid i totalment en sèrie. En aquest sentit, se suggereixen algunes modificacions al model tradicional de consum d'energia per a obtindre resultats més precisos quan s'analitzen entorns en sèrie. A partir dels resultats obtinguts, es destaca la importància d'aplicar les modificacions proposades que consideren l'estalvi d'energia a causa de les connexions serie en un desplegament de MIMO massiva sense cel·les on cada AP transmet la mateixa informació (excepte pels coeficients de precodificació). D'altra banda, encara que en la banda mil·limètrica es disposa de majors amplades de banda, l'ús d'aquestes freqüències comporta uns certs reptes. Un d'aquests reptes és el modelatge del canal radioelèctric, ja que en treballar amb longituds d'ona de l'ordre de desenes de mil·límetres qualsevol objecte o rugositat del mateix pot afectar la propagació de l'ona. En aquest sentit, aquesta Tesi, en primer lloc, proposa algunes adaptacions al model de bloqueig del cos humà del 3GPP. Els resultats obtinguts després de les modificacions s'acosten més als valors dels mesuraments reals, la qual cosa fa que el model adaptat siga més precís per a la consideració del bloqueig corporal en mmW. En segon lloc, aquesta Tesi presenta una eina de simulació de radiocanales basada en el traçat de raigs. S'han obtingut resultats de pèrdues de trajecte per a un escenari d'interior que s'aproximen notablement a les mesures reals. Així mateix, els resultats obtinguts mostren que quan no es modelen correctament les característiques electromagnètiques dels materials o no es té en compte el mobiliari en un escenari d'interior, els resultats poden diferir considerablement de les mesures reals. Finalment, aquesta Tesi aborda el disseny de precodificadors en sistemes MIMO massius sense cel·les en un escenari realista. Per a això, es considera un escenari industrial amb requeriments de potència específics. En particular, es resol un problema d'optimització amb diferents restriccions de potència per antena. / [EN] The massive use of telecommunications demands higher capacity networks. This capacity can be increased by increasing the number of antennas, bandwidth, spectral efficiency, or a combination of these. In response to this, cell-free massive MIMO systems have emerged. These systems aim to offer a ubiquitous and reliable service, relying on a massive number of antennas and adapting the network to users' needs. Cell-free massive MIMO systems have been studied both for frequencies below 6 GHz and in the mmW band, proving to be a good alternative to small cells. However, many issues still require further study. This Thesis addresses the issues concerning cell-free massive MIMO deployments in terms of scalability, power consumption, realistic modeling of deployment scenarios, and design of precoders for such scenarios in the mmW band. Cell-free massive systems in their canonical form consider that all the APs are connected to a single CPU and serve all UEs simultaneously. However, in practice, such a system is not feasible, due to scalability reasons. Therefore, in this Thesis, different clustering solutions that alleviate the load of both each individual AP and the CPUs, as the total processing load is divided among them, are studied and proposed. The proposed solutions show a better performance than the state-of-the-art solution studied for all cluster sizes considered and independently of the number of UEs in the scenario. After the logical network topology considerations, the impact on the network performance of different physical topologies configurations is analyzed. Specifically, the power consumption modeling considering fully dedicated, hybrid, and fully serial front-haul is studied. In this sense, some modifications are suggested for the traditional power consumption model in order to get more accurate results when serial environments are analyzed. The obtained results highlight the importance of applying the proposed modifications that consider the power savings due to the serial connections in a cell-free massive MIMO deployment where each AP transmits the same information (except by the precoding coefficients). On the other hand, although wider bandwidths are available in the millimeter band, the use of these frequencies brings certain challenges. One of these challenges is modeling the radio channel since when working with wavelengths in the order of tens of millimeters, any object or roughness of the same order can affect the propagation of the wave. Another challenge is to consider the electromagnetic impact of the human body at mmW frequencies. In this sense, this Thesis, firstly, proposes some adaptations to the 3GPP body blockage model. The results obtained after the modifications are closer to real measurement values, what makes the adapted model more accurate for the consideration of body blockage at mmW. Secondly, this Thesis presents a radio channel simulation tool based on ray tracing. With this tool, path loss results have been obtained for an indoor scenario that are remarkably close to the actual measurements. Also, the results show that when the electromagnetic characteristics of the materials are not modeled correctly or the furniture is not taken into account in an indoor scenario, the adjustment of the simulation results can differ considerably from the actual measurements. Finally, the design of precoders in cell-free massive MIMO systems in a realistic scenario is addressed. For this purpose, an industrial scenario with specific power requirements is considered. In particular, an optimization problem with different per-antenna power constraints is solved. In this case, the scenario and the radio channel are modeled using the above-mentioned tool. This fact makes it possible to find with high precision the power coefficients to be used by each transmitting antenna to transmit to each user so that the achieved data rate is maximized. / I would like to thank the H2020 Marie Curie Program that has funded this thesis within Project Grant No. 766231 WAVECOMBE - ITN - 2017 / Prado Alvarez, D. (2022). Study of Feasible Cell-Free Massive MIMO Systems in Realistic Indoor Scenarios [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/191375
60

Exploration of Radar Cross Section Models and Distributed Sensing Techniques in JCAS Cell-free Massive MIMO / Exploration av radar tvärsektionsmodeller och distribuerade avkänningstekniker i JCAS Cellfri Massive MIMO

Zou, Qinglin January 2023 (has links)
Joint Communication and Sensing (JCAS) technology enables the sharing of infrastructure, resources, and signals between communication and sensing. However, studying the performance and algorithms using appropriate target reflectivity models for detection poses a significant challenge. Moreover, the increasing demand for efficient sensing systems in large-scale environments necessitates the study of distributed sensing for handling extensive data collection and processing. This study investigates the impact of target mobility on the choice between the Swerling-I and Swerling-II models for target reflectivity and proposes a brief method for reflectivity models in multi-static sensing. This method constructed a dedicated decorrelation area for a single radar detector using its decorrelation angle. Multiple radar system constructs an intersection of these areas. For targets expected to remain in this area, the Swerling-I model is preferred, while for targets likely to move to the outside intersection, the Swerling-II model is more suitable. Additionally, this thesis proposes and derives the test statistics for the distributed sensing in JCAS cell-free massive MIMO (multiple-input multiple-output) systems, where only the statistical distribution of transmitted signals is known at the receiver access points for the sensing purpose. This thesis compares the sensing performance of the proposed distributed processing with the centralized processing. Moreover, the results of a power allocation algorithm that maximizes sensing performance are compared against a baseline algorithm that minimizes total power consumption. In terms of sensing performance via guaranteeing the quality of service of the communication, the results indicate that the sensing algorithm consistently outperforms the power-minimizing algorithm, regardless of the selected reflectivity model. Furthermore, the Swerling-II model performs relatively worse when the reflectivity of the target is low, but exhibits improved performance on a relatively high reflectivity target. Regarding distributed sensing, its implementation may lead to a deterioration in sensing performance. However, the results show that distributed sensing can approach the performance of centralized sensing when the target has high reflectivity. The major advantage of distributed sensing is the reduced fronthaul signaling load in a JCAS cell-free massive MIMO system. / Joint Communication and Sensing (JCAS) teknologi möjliggör delning av infrastruktur, resurser och signaler mellan kommunikation och sensorik. Studier av prestanda och algoritmer med lämpliga modeller för detektering av målets reflektivitet utgör emellertid en betydande utmaning. Dessutom kräver den ökande efterfrågan på effektiva sensorsystem i storskaliga miljöer studier av distribuerad sensorik för att hantera omfattande datainsamling och -bearbetning. Detta studie undersöker påverkan av målets rörlighet på valet mellan SwerlingI och Swerling-II modellerna för målets reflektivitet och föreslår en kort metod för reflektivitetsmodeller i multi-statisk avkänning. Denna metod konstruerar ett dedikerat dekorrelationsområde för en enskild radardetektor med hjälp av dess dekorrelationsvinkel. Ett flertal radarsystem konstruerar en skärningspunkt av dessa områden. För mål som förväntas förbli i detta område föredras Swerling-I-modellen, medan för mål som troligen rör sig till den yttre skärningspunkten är Swerling-II-modellen mer lämplig. Dessutom föreslår och härleder denna avhandling teststatistik för distribuerad avkänning i JCAS cellfri massiv MIMO (multiple-input multiple-output) system, där endast den statistiska fördelningen av överförda signaler är känd vid mottagarens åtkomstpunkter för avkänningsändamål. Denna avhandling jämför avkänningsprestanda för föreslagen distribuerad bearbetning med centraliserad bearbetning. Dessutom jämförs resultaten av en effekttilldelningsalgoritm som maximerar avkänningsprestanda mot en baslinjealgoritm som minimerar total effektförbrukning. När det gäller avkänningsprestanda genom att garantera kommunikationens tjänstekvalitet indikerar resultaten att avkänningsalgoritmen konsekvent presterar bättre än effektminimeringsalgoritmen, oavsett vald reflektivitetsmodell. Dessutom presterar Swerling-II-modellen relativt sämre när målets reflektivitet är låg, men uppvisar förbättrad prestanda på ett relativt högreflekterande mål. När det gäller distribuerad avkänning kan dess implementering leda till försämrad avkänningsprestanda. Resultaten visar dock att distribuerad avkänning kan närma sig prestandan hos centraliserad avkänning när målet har hög reflektivitet. Den största fördelen med distribuerad avkänning är den minskade signalbelastningen i en JCAS cellfri massiv MIMO-system.

Page generated in 0.0306 seconds