• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Aubry-Mather theory for partial differential equations and the stability of stochastically forced ordinary differential equations

Blass, Timothy James 01 June 2011 (has links)
This dissertation is organized into four chapters: an introduction followed by three chapters, each based on one of three separate papers. In Chapter 2 we consider gradient descent equations for energy functionals of the type [mathematical equation] where A is a second-order uniformly elliptic operator with smooth coefficients. We consider the gradient descent equation for S, where the gradient is an element of the Sobolev space H[superscipt beta], [beta is an element of](0, 1), with a metric that depends on A and a positive number [gamma] > sup |V₂₂|. The main result of Chapter 2 is a weak comparison principle for such a gradient flow. We extend our methods to the case where A is a fractional power of an elliptic operator, and we provide an application to the Aubry-Mather theory for partial differential equations and pseudo-differential equations by finding plane-like minimizers of the energy functional. In Chapter 3 we investigate the differentiability of the minimal average energy associated to the functionals [mathematical equation] using numerical and perturbation methods. We use the Sobolev gradient descent method as a numerical tool to compute solutions of the Euler-Lagrange equations with some periodicity conditions; this is the cell problem in homogenization. We use these solutions to determine the minimal average energy as a function of the slope. We also obtain a representation of the solutions to the Euler-Lagrange equations as a Lindstedt series in the perturbation parameter [epsilon], and use this to confirm our numerical results. Additionally, we prove convergence of the Lindstedt series. In Chapter 4 we present a method for determining the stability of a class of stochastically forced ordinary differential equations, where the forcing term can be obtained by passing white noise through a filter of arbitrarily high degree. We use the Fokker-Planck equation to write a partial differential equation for the second moments, which we turn into an eigenvalue problem for a second-order differential operator. We develop ladder operators to determine analytic expressions for the eigenvalues and eigenfunctions of this differential operator, and thus determine the stability. / text
2

[en] TOPICS IN MATHER THEORY / [pt] TÓPICOS EM TEORIA DE MATHER

JORGE LUIZ O SANTOS GODOY 25 July 2007 (has links)
[pt] Seja (Es)t o espaço de germes na origem de funções suaves entre os espaços euclidianos de dimensões e t. Nesta dissertação, apresentamos a parte da Teoria de Mather que descreve hipóteses suficientes para k-determinação em (Es)t sob duas ações diferentes, induzindo as chamadas R- e K-equivalências. Um germe é k-determinado se é equivalente a qualquer perturbação que deixa invariante seu k-jato, os termos de ordem até k de sua expansão de Taylor na origem. A R-equivalência consiste em compor germes com germes de difeomorfismos µa direita. A K- equivalência é mais difícil de descrever. / [en] Let (Es)t be the space of smooth map-germs at the origin between Euclidian spaces of dimensions s and t. In this dissertation, we present a section of Mather theory describing su±cient conditions for k- determinacy of this map-germs under two different actions, inducing the so called R- e K- equivalences. A map-germ is k-determined if it is equivalent to any perturbation that leaves invariant its k-jet, i.e., the terms up to order k of its Taylor expansion at the origin. The R-equivalence consists of compositions with germs of diffeomorphisms to the right. The K- equivalence is harder to describe.

Page generated in 0.0352 seconds