• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 23
  • 1
  • Tagged with
  • 127
  • 127
  • 126
  • 126
  • 126
  • 126
  • 73
  • 73
  • 59
  • 58
  • 16
  • 13
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Impact of the VirF regulatory cascade on Shigella flexneri’s fitness and virulence

Bhetwal, Anjeela January 2021 (has links)
No description available.
22

Systemic and local regulation of experimental arthritis by IFN-α, dendritic cells and uridine

Chenna Narendra, Sudeep January 2017 (has links)
In this thesis, we have studied the immunological processes of joint inflammation that may be targets for future treatment of patients with arthritis. We focus on the immune-modulating properties of interferon-α (IFN-α) and uridine in experimental arthritis. The nucleoside uridine, which is regarded a safe treatment has anti-inflammatory properties notably by inhibiting tumor necrosis factor (TNF) release. Because the inflamed synovium in rheumatoid arthritis (RA) is characterised by pathogenic TNF-production, uridine could potentially be away to ameliorate arthritis. Systemic administration of uridine had no effect on antigeninduced arthritis (AIA), which is a T-cell dependent model where animals are immunized twice (sensitization) with bovine serum albumin (mBSA), before local triggering of arthritis by intra-articular antigen (mBSA) re-challenge. In contrast, intra-articular administration of uridine clearly down modulated development of AIA in a dose dependent manner and inhibited the expression of synovial adhesion molecules, influx of inflammatory leukocytes and synovial expression of TNF and interleukin 6, but did not affect systemic levels of proinflammatory cytokines or antigen-specific T-cell responses. Local administration of uridine may thus be a viable therapeutic option for treatment of arthritis in the future. Viral double-stranded deoxyribonucleic acid (dsRNA), a common nucleic acid found in most viruses, can be found in the joints of RA patients and local deposition of such viral dsRNA induces arthritis by activating IFN-α. Here we show that arthritis induced by dsRNA can be mediated by IFN-producing dendritic cells in the joint and this may thus explain why viral infections are sometimes associated with arthritis. Earlier, to study the effect of dsRNA and IFN-α in an arthritis model, that like RA, is dependent on adaptive immunity, dsRNA and IFN-α were administered individually during the development of AIA. Both molecules clearly protected against AIA in a type I IFN receptor-dependent manner but were only effective if administered in the sensitization phase of AIA. Here we show that the anti-inflammatory effect of IFN-α is critically dependent on signalling via transforming growth factor β (TGF-β) and the enzymatic activity of indoleamine 2,3 dioxygenase 1 (IDO). The IDO enzyme is produced by plasmacytoid DC and this cell type was critically required both during antigen sensitization and in the arthritis phase of AIA for the protective effect of IFN-α against AIA. In contrast, TGF-β and the enzymatic activity of IDO were only required during sensitization, which indicate that they are involved in initial steps of tolerogenic antigen sensitization. In this scenario, IFN- α first activates the enzymatic activity of IDO in pDC, which converts Tryptophan to Kynurenine, which thereafter activates TGF-β. Common for IDO-expressing pDC, Kyn and TGF-β is their ability to induce development of regulatory T cells (Tregs). We found that Tregs were crucial for IFN-α-mediated protection against AIA, but only in the arthritis phase. In line with this, adoptive transfer of Tregs isolated from IFN-α treated mice to recipient animals in the arthritis phase clearly protected against AIA. The numbers of Tregs were not significantly altered by IFN-α but IFN-α increased the suppressive capacity of Tregs against antigen-induced proliferation. This enhanced suppressive activity of Tregs in the arthritis phase was dependent on the earlier activated enzyme IDO1 during the sensitization phase of AIA. Thus, presence of IFN-α at the time of antigen sensitization activates the enzymatic activity of IDO, which generates Tregs with enhanced suppressive capacity that upon antigen re-challenge prevents inflammation. We have thus identified one example of how immune tolerance can be developed, that may be a future way to combat autoimmunity.
23

PCR detection and prevalence of Mycoplasma genitalium

Edberg, Andreas January 2010 (has links)
Chlamydia and gonorrhea are major causes of sexually transmitted infections (STI) in adolescents worldwide. The infections are caused by Chlamydia trachomatis or Neisseria gonorrhoeae, bacteria with clinical manifestations such as urethritis, prostatitis and epididymitis among men, and urethritis, cervicitis and upper genital tract infection (i.e. pelvic inflammatory disease) among women. However, in many cases of genital tract infection, the etiology remains uncertain. In light of this, Mycoplasma genitalium was somewhat accidentally isolated in 1980 after prolonged incubation of urogenital specimens from men with non-gonococcal urethritis. Following the initial isolation in 1980, repeated attempts have been made to recover the extremely fastidious organism from clinical samples by culture techniques, but isolates have been rare and difficult to obtain. With the development of PCR methods in the early 1990s, detection of M. genitalium infection became more feasible. The aim in paper I was to compare three different PCR assays (conventional and real-time 16S rRNA gene PCR as well as real-time Mycoplasma genitalium adhesin protein (MgPa) gene PCR) for detection of M. genitalium. The study also determined the prevalence of M. genitalium. Clinical specimens collected from STI attendees, 381 men and 298 women, were used to determine the prevalence of M. genitalium and 213 of these specimens were used in the PCR comparative study. The prevalence of M. genitalium infection in men and women was 27/381 (7.1 %) and 23/298 (7.7 %) respectively. In the PCR comparative study, M. genitalium DNA were detected in 61/76 (80.3 %) of true-positive specimen by conventional 16S rRNA gene PCR, in 52/76 (68.4 %) by real-time 16S rRNA gene PCR and in 74/76 (97.4 %) by real-time MgPa gene PCR. Hence, real-time MgPa gene PCR is well suited for clinical diagnosis of M. genitalium in urogenital specimens from men and women. The aim in paper II was to determine whether a patients’ endocervical swab specimen can be transported in first void urine (FVU) as combined specimens in detection of Mycoplasma genitalium by real-time PCR. The study also compared two different DNA extraction methods (manual Chelex DNA extraction and automated BioRobot M48 DNA extraction) for observation of possible PCR inhibition. Clinical specimens collected from 329 women attending a STI clinic were used in the study. A total of 100 endocervical swab specimens transported in FVU was used in the PCR inhibition analysis. M. genitalium was detected in 25/329 (7.6 %) women. Endocervical swab specimens transported in FVU demonstrate higher sensitivity compared to both FVU alone and specimens transported in 2-SP medium detecting 24/25 (96 %), 22/25 (88 %) and 17/25 (68 %) of M. genitalium positive women, respectively. Automated BioRobot M48 DNA extraction was shown to be superior to manual Chelex extraction leaving no PCR inhibition and slightly higher DNA yield and/or better sensitivity. The results from these two studies are important knowledge in establishing the future diagnostic level of this STI in our county and also nationally.
24

Variation at position 86 of the pfmdr1 gene in samples from an area with seasonal transmission in eastern Sudan

Villalta Montoya, Tamara January 2009 (has links)
Malaria is the most common parasitic disease of humans worldwide. A factor that aggravates the many attempts to control the epidemiologic malaria situation is the spreading of resistance against anti-malarial drugs. In this project the point mutation at position 86 of the Plasmodium. falciparum multidrug resistance gene (pfmdr1), which is thought to contribute to Chloroquine resistance, was analysed in 188 samples from a low transmission area in eastern Sudan, where malaria endemicity is seasonal. The patient group studied had asymptomatic and sub patent parasitemia that persisted during the transmission-free dry season, after being treated with Chloroquine. To differentiate between wild type and mutant genotypes, nested PCR and restriction fragment length polymorphism with the enzyme Apo1 was used. Out of 188 samples 79 (42%) were successfully analysed. Of those, 72% had parasites with mutant genotypes or where mixed infection. No conclusions on the relevance of the pfmdr1 gene in the studied samples are made due to the many remaining gaps. However, eventual sources of error and previous findings in the study area are discussed.
25

Antibiotic-Regulated Plasmid Copy Number Variation: A Driver of Antibiotic Resistance?

Eldek, Ahmed January 2019 (has links)
Plasmids are small circular DNA molecules within bacterial cells that are separated from the bacterial chromosome and replicate independently. Also, they play a crucial role in the dissemination of antibiotic resistance genes among bacteria through horizontal gene transfer. They can be present in many copies within host cell, which is known as plasmid copy number. Plasmids can regulate their own copy number by different mechanisms. Additionally, the selective pressure can also play a pivotal role in determining plasmid copy number. The presence of antibiotics in the surrounding environment can drive variations of plasmid copy number. In this study, we examined plasmid copy number variations of multidrug resistance plasmids in presence of antibiotics by using EvaGreen® - based multiplexed digital droplet PCR. We could observe that cultures of Klebsiella pneumoniae and Escherichia coli harboring multidrug resistance plasmids grown in presence of sub-MIC concentrations of the antibiotics did not show high variations in plasmid copy numbers. On the other hand, mutants of K. pneumoniae selected for increased antibiotic resistance showed high increases in copy number of a multidrug-resistance plasmid.
26

An epidemiological study of Swedish Campylobacter jejuni isolates from humans and broilers using multilocus sequence typing

Lövström, Tora January 2009 (has links)
Campylobacter jejuni is the main cause of bacterial diarrhoeal illness in developed countries, with ~7000 cases being reported each year in Sweden. C. jejuni has received growing attention since it’s recognition as a human pathogen in the 1970s, but its epidemiology is complex and much still remains unknown. There are several potential reservoirs for C. jejuni, including environmental sources as water and soil, wild and domesticated animals, particularly poultry, but also other livestock and pets. In this study 348 Swedish C. jejuni isolates from the year 2000 from humans (n = 164) and broilers (n = 184) were characterized with multilocus sequence typing (MLST) with the aim of comparing the population structures and diversity of C. jejuni between isolates from the two hosts. MLST is a method for characterization of bacterial isolates that indexes the variation in DNA sequence of multiple protein encoding housekeeping genes. A secondary aim in this study was to compare populations of C. jejuni from 11 subgroups of isolates based on location of the sampling. The overlap between the populations was analyzed numerically based on genotypes detected and with analysis of phylogeny, gene flow and molecular variation. It was shown that the population structure of C. jejuni isolates from broilers and humans show a high degree of similarity, supporting broilers as an important source of human infection. However, even though the population structure of human and broiler C. jejuni were almost genetically indistinguishable other sources of C. jejuni infections in humans cannot be ruled out since the same genotypes can be found in other sources as well. Analysis of the 11 subgroups suggested that there may be a difference in populations infecting humans in different Swedish regions, and between populations of C. jejuni in broilers from different slaughterhouses. But this could be a result of chance since most of the subgroups were small. Future studies to improve the understanding of C. jejuni epidemiology, for which MLST has proven itself as a valid method, is important to develop control strategies to prevent infection with this common cause of diarrhoeal illness.
27

Interplay between tick-borne encephalitis virus and the host innate immunity

Kurhade, Chaitanya January 2017 (has links)
Flaviviruses are important emerging and re-emerging arthropod-borne pathogens that cause significant morbidity and mortality in humans. It consists of globally distributed human pathogens such as tick-borne encephalitis virus (TBEV), West Nile virus (WNV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), dengue virus (DENV), and Zika virus (ZIKV). Depending on type, flaviviruses can cause a variety of symptoms ranging from haemorrhage to neurological disorders. Virus infection is detected by host pattern recognition receptors (PRRs), and through downstream signalling it leads to the production of interferons (IFNs). These IFNs then act in an autocrine or paracrine manner on the cells to induce various IFN-stimulated genes (ISGs), which have antiviral roles. However, the amount of IFN produced depends on the nature of the PRRs used by host cells to detect a particular virus. Although there are many PRRs present in the host cells, their relative contribution in different cell types and against a specific virus may vary. In the first study, we determined the importance of IPS-1 signalling in immunity and pathogenicity of tick-borne flaviviruses. This is an adaptor protein for cytoplasmic RIG-I-like receptors. Using IPS-1-deficient mice, we showed its importance against TBEV and Langat virus (LGTV) infection (the LGTV model virus belongs to the TBEV serogroup). Absence of IPS-1 leads to uncontrolled virus replication in the central nervous system (CNS), but it has only a minor role in shaping the humoral immune response at the periphery. LGTV-infected IPS-1-deficient mice showed apoptosis, activation of microglia and astrocytes, an elevated proinflammatory response, and recruitment of immune cells to the CNS. Interestingly, we also found that IFN-b upregulation after viral infection was dependent on IPS-1 in the olfactory bulb of the brain.  Thus, our results suggest that local immune microenvironment of distinct brain regions is critical for determination of virus permissiveness. Interferons can upregulate several ISGs. Viperin is one such ISG that has a broad-spectrum antiviral action against many viruses. However, the importance of cell type and the significance of viperin in controlling many flavivirus infections in vivo is not known. Using viperin-deficient mice, we found that viperin was necessary for restriction of LGTV replication in the olfactory bulb and cerebrum, but not in the cerebellum. This finding was also confirmed with primary neurons derived from these brain regions. Furthermore, we could also show the particular importance of viperin in cortical neurons against TBEV, WNV, and ZIKV infection. The results suggested that a single ISG can shape the susceptibility and immune response to a flavivirus in different regions of the brain. Although viperin is such an important ISG against flaviviruses, the exact molecular mechanism of action is not known. To understand the mechanism, we performed co-immunoprecipitation screening to identify TBEV proteins that could interact with viperin. While viperin interacted with the prM, E, NS2A, NS2B, and NS3 proteins of TBEV, its interaction with NS3 led to its degradation through the proteosomal pathway. Furthermore, viperin could reduce the stability of other viperin-binding TBEV proteins in an NS3-dependent manner. We screened for viperin activity regarding interaction with NS3 proteins of other flaviviruses. Viperin interacted with NS3 of JEV, ZIKV, and YFV, but selectively degraded NS3 proteins of TBEV and ZIKV, and this activity correlated with its antiviral activity against these viruses. The last study was based on in vivo characterization of the newly isolated MucAr HB 171/11 strain of TBEV which caused unusual gastrointestinal and constitutional symptoms. This strain was compared with another strain, Torö-2003, of the same European subtype of TBEV but isolated from the different focus. Here we found unique differences in their neuroinvasiveness and neurovirulence, and in the immune response to these two strains. In summary, my work shed some light on the interplay between tick-borne flavivirus and the innate immune system. I have shown two examples of CNS region-specific differences in innate immune response regarding both in IFN induction pathways and antiviral effectors. Furthermore, we have investigated the in vivo pathogenesis of a strain of TBEV that caused unusual gastrointestinal and constitutional symptoms. / Flavivirus finns spridda över hela världen och orsakar miljontals infektioner varje år. Några av de medicinsk mest viktiga flavivirusen är fästingburen encefalit virus (TBEV), West Nile virus (WNV), Japansk encefalit virus (JEV), gula febern (YFV) och Zika virus (ZIKV). Dessa virus kan orsaka olika komplikationer till exempel blödarfeber och hjärninflammation. Vid en infektion så upptäcker värdcellen virusinfektionen med hjälp av speciella receptorer, så kallade PRRs. Dessa finns i alla celler och känner igen viruskomponenter som normalt inte finns i en oinfekterad cell. När PRRs detekterar en virusinfektion svarar cellen med att tillverka ett signal protein interferon (IFN). IFN skickas ut ur cellen och hämmar virusinfektioner genom att sätta igång ett försvarsprogram i andra celler bestående av hundratals försvarsproteiner som kan motverka virusinfektionen. Vilka PRRs som behövs för att detektera ett virus är olika vid olika virusinfektioner. I första studien fann vi att IPS-1 är av yttersta vikt för skydda mot fästingburna flavivirus. IPS-1 är ett så kallat adapter protein som behövs för att två PRRs, RIG-I och MDA-5, ska kunna förmedla signaler som leder till IFN tillverkning. Med hjälp av möss som saknar IPS-1 fann vi att IPS-1 behövs för att tillverka IFN protein och skydda mot fästingburna flavivirus. IPS-1 var särskilt viktigt för interferon produktion inom luktloben i hjärnan. Därför kunde vi dra slutsatsen att immunresponsen regleras olika inom olika delar av hjärnan. Ett försvarsprotein som visat sig vara särskilt viktig vid virusinfektion är viperin. Viperin har visat sig kunna hämma en rad olika virus men den specifika rollen av viperin in vivo vid flavivirus infektion var inte fullt känd. Vi fann att viperin behövs för att hämma LGTV i lukloben och storhjärnan men inte i lillhjärnan. Vi kunde bekräfta detta med hjälp av primära nervceller isolerade från dessa hjärnregioner. Vi fann även att viperin var av yttersta vikt för att kontrollera TBEV, WNV och ZIKV infektion i nervceller från hjärnbarken (del av storhjärnan). Därför kunde vi dra slutsatsen att ett enskilt försvarsprotein kan avgöra mottagligheten mot flavivirus inom olika hjärnregioner. Trots att viperin är så viktig för att skydda mot flavivirus så vet vi inte hur viperin åstadkommer detta. Därför ville vi undersöka hur viperin kan förmedla sin antivirala effekt. Vi fann att viperin kan binda till flera TBEV proteiner, men att viperin specifikt kan bryta ner ett virusprotein som heter NS3. NS3 är väldigt viktigt för att flavivirus ska kunna etablera en infektion och kunna föröka sig. Eftersom vi visste att viperin kan hämma andra flavivirus ville vi veta om viperin även förstör NS3 från JEV, ZIKV och YFV. Vi upptäckte att viperin kunde binda till NS3 hos alla dessa flavivirus men att viperin specifikt förstörde TBEV och ZIKV NS3, intressant nog så kunde viperin endast hämma dessa virus infektioner men inte JEV och YFV. I den sista studien ville vi karaktärisera en ny TBEV stam som bara orsakar magoch tarmbesvär men inga neurologiska symptom. TBEV har aldrig tidigare visat sig kunna orsaka detta och därför ville vi undersöka saken vidare. Vi fann att denna TBEV stam skiljde sig mot en närbesläktad stam genom att orsaka en starkare immunrespons men mildare sjukdomsförlopp. Sammanfattningsvis har jag undersökt samspelet mellan fästingburna flavivirus och det medfödda immunförsvaret. Jag har även visat att immunresponsen regleras olika inom olika hjärnregioner, både beträffande IFN inducering och antivirala proteiner. Vidare har jag hittat mekanismen för hur viperin proteinet hämmar TBEV och ZIKV, vilket var genom att förstöra NS3. Dessutom har jag karaktäriserat sjukdomsförloppet hos möss efter infektion med en ovanlig TBEV stam som orsakar mag och tarm besvär.
28

DNA profiles generated from minute amounts of single cells

Wenäll, Lovisa January 2011 (has links)
The genetic code in our cells is built up by deoxyribonucleic acid (DNA) with a sequence that is individual and unique to each person. A cell’s origin can be decided by comparing an established DNA profile with a known profile. The most publicly known application is in the forensic field and its use for identification and for establishing a connection between perpetrators and victims or crime scenes. DNA profiling is also commonly used for kinship investigations. The information embedded in the DNA is also used for diagnostic purposes in conventional medicine. Generating DNA profiles is a well-established procedure, which is used daily and for many purposes. An amount of approximately 150-1500 cells is required to be able to establish a full DNA profile using current methods. There are several situations where the amount of material is limited. To enable analysis where the testing material is limited it is of great value to develop a method that can perform these analyses on minute amounts of cells. If there were a method for generating DNA profiles from single cells then mixed samples from crime scenes would be separable. In tumour biology it is also of interest to obtain information from single cells. The aim with the thesis was to establish the smallest amount of cells needed for a full DNA profile. The thesis started with analyses on extracted DNA. During several experiments dilution series were made to investigate the possibilities to establish profiles from minute amounts of extracted DNA. The main methods used during this thesis were polymerase chain reaction (PCR) and capillary gel electrophoresis (CGE). These methods are well-established tools both in biomedical science and at The Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine. Different factors were optimized and the acquired knowledge resulted in application of DNA on FTA® Micro Cards. The cards are used in the daily routines and are easy to use. Several experiments were then performed on peripheral lymphocytes based on the knowledge acquired during the process. Applying a low amount of lymphocytes on FTA cards proved to be very successful and the method generates DNA profiles at a single cell level. The method is applicable for approximately 5-10 cells.
29

Quantification of Tripeptidyl-peptidase II : Optimisation and evaluation of 3 assays

Gyllenfjärd, Sabina January 2010 (has links)
Abstract   Tripeptidyl-peptidase II (TPPII), is present in most eukaryotic cells. It cuts tripeptides from the N-terminus of peptides and is especially important for degrading peptides longer than 15 amino acids. TPPII also tailors long peptides into suitable substrates for the enzymes which transport and produce the peptides that MHC I present. Increased levels of TPPII have also been found in certain cancer cells, thus it is of interest to determine if TPPII could be used as a tumour marker. The aim of this study was to optimise and evaluate 3 different methods for quantifying TPPII. Western blot, enzyme-linked immunosorbent assay (ELISA) and fluorophore-linked immunosorbent assay (FLISA) protocols were optimised regarding incubation times and antibody dilutions. Sensitivity and linearity were the most important parameters when evaluating the results. The coefficient of determination of western blot was R2=0.98-1 within the range of 1.29-250ng TPPII/well and ELISA had a coefficient of determination of R2=0.96 within the range of 0.03-250ng TPPII/well. Presently western blot is the only one of these methods to yield reliable results with impure samples, but ELISA is superior regarding sensitivity and throughput. Thus further optimisation of ELISA is interesting to pursue.
30

QUALITY OF TACSI PLATELETS AND THEIR EFFECT ON THROMBOCYTOPENIA PATIENTS

Lundin, Ann-Sofie January 2010 (has links)
Conclusion:Medical treatment may have a role in platelet count after transfusion. Since the TACSI platelets passed the quality requirements, and the vast majority of patients platelet count increased after TACSI platelet transfusion, the TACSI platelets will replace the old method to produce platelets at the Uppsala University hospital.     Methods: A new approach that pools 8 buffy coats (TACSI platelets) that were separated into 2 units instead of 4-6 buffy coats pooled to 1 unit was investigated in this study. After the platelets were extracted from the buffy coats their quality was controlled and subsequently the platelet product was evaluated in 96 patients.   Results: The results showed that 80 % of the platelet units passed the European quality requirements. Further, the platelet count was increased in most patients that received TACSI platelets. Conclusion: Medical treatment may have a role in platelet count after transfusion. Since the TACSI platelets passed the quality requirements, and the vast majority of patients platelet count increased after TACSI platelet transfusion, the TACSI platelets will replace the old method to produce platelets at the Uppsala University hospital.

Page generated in 0.184 seconds