• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 745
  • 110
  • 75
  • 34
  • 22
  • 18
  • 14
  • 12
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1344
  • 259
  • 235
  • 232
  • 194
  • 159
  • 154
  • 140
  • 125
  • 117
  • 105
  • 96
  • 92
  • 90
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Climate changers : an interdisciplinary exploration of reducing personal carbon emissions /

Johnson, Carly A. January 1900 (has links)
Thesis (M.A.I.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 74-79). Also available on the World Wide Web.
112

Energy substitution and options for carbon dioxide mitigation in Nigeria an economic approach /

Adeyemo, Oyenike Olubukanla. January 2007 (has links)
Thesis (PhD(Agricultural Economics, Extension and Rural Development))--University of Pretoria, 2007. / Includes bibliographical references.
113

A model to evaluate CO₂ emission reduction strategies in the US

Arar, Joseph I., January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 149-154).
114

Assessing soil carbon and carbon dioxide effluxes under different vegetation cover conditions in the Eastern Cape Province, South Africa

Zengeni, Rebecca January 2013 (has links)
Albany thicket is prevalent in the Eastern Cape Province of South Africa. Its spread has diminished through overgrazing and heavy browsing by animals, land clearance and urban expansion. The result is highly degraded land characterized by invasion of alien species. There is a wealth of documented evidence on the high carbon sequestration ability of thicket biome, but not much has been done to assess its effect on carbon dioxide emissions from the soil. Given that the concentration of atmospheric greenhouse gases has been constantly rising since the industrial era, it is imperative to assess the influence of thicket biome as a source or sink of these gases. There is evidence of shifts in the climate in southern Africa as reflected by changes in rainfall patterns, increased temperatures, recurrent droughts and fires. As such, the historical rainfall variability in an Albany thicket region and its interaction with the temporal land use / cover changes was studied. This served to give some background information about the study area for more detailed study on C and carbon dioxide effluxes in thicket vegetation under different levels of degradation. This study thus aimed to determine the influence of thicket vegetation at various levels of degradation on soil carbon and carbon dioxide fluxes. The impact of plant photosynthetic pathway on soil C residence time and gas effluxes were analysed to elucidate on the land-use and cover patterns occurring in the area. All this was done to shed some light on the role of soil and thicket vegetation on carbon dioxide emissions and C storage in the spectrum of a shifting climate. The main area of research was Amakhala reserve in an Albany thicket in Eastern Cape Province; and it concentrated on three land cover types namely intact thicket, degraded thicket and grassland. The objectives mentioned above were achieved by assessing historical rainfall variability from 1970 to 2010 through trend and time series analysis at nine rainfall stations located at Amakhala reserve, Grahamstown, Bathurst, Port Alfred, Uitenhage and Port Elizabeth. The land use changes that have occurred in the Albany thicket region covering Amakhala reserve, Grahamstown, Bathurst and Port Alfred were also assessed for 1989, 1999 and 2009 through satellite image analysis with Idrisi Andes GIS software; then their interaction with rainfall variability were determined. To elucidate on the vegetation species composition and land use / cover changes that have occurred in the study area, plant biomass as well carbon (C) and nitrogen (N) isotope measurements were done. Plant biomass was assessed for the dominant species through use of pre-existing allometric equations that required data on plant basal diameter, canopy area, stem numbers and height. The plant carbon was then estimated through use of a conversion factor of 0.48 on above-ground biomass, while soil organic C was determined through the modified Walkely - Black method. Carbon and N isotope ratios were determined from the foliar material of three replicate samples of dominant plant species then analyzed through mass spectrometry. Soil carbon dioxide effluxes were then monitored in each of the intact thicket (IT), degraded thicket (DT) and grassland (G) over a 10 month period; by measuring the net carbon dioxide exchange rate (NCER) through the dynamic chamber method. An automated carbon dioxide exchange analyzer, coupled to a soil temperature probe and photosynthetic active radiation (PAR) sensor was used; with NCER measurements taken every 20-30 days. Soil temperature, moisture, penetration resistance and PAR readings were taken during each assay and later used to interpret the NCER. Results showed that long term variability in annual rainfall had a declining trend at Grahamstown (r = -0.59), Uitenhage and Bathurst stations (r = -0.32 at both stations), but was not significant at Amakhala, Port Alfred and Port Elizabeth stations. Most reductions in rainfall occurred in the 1980s and 1990s with the autumn, winter and summer rainfalls, the daily rainfall index and the daily rainfall subclasses of 10 mm and above showing a similar trend. The land use change detection gave a significant increase in proportion of degraded and transformed (moderately degraded) land between 1989 and 2009 with most of the increases occurring from 1989 to 1999, while farmland area decreased by 1.8 percent over the years. Thus the Albany region had over 30 percent of its land occupied by transformed vegetation, with heavy browsing and uncontrolled grazing being attributed to the destruction of pristine vegetation. Land-use change to game ranching and goat pastoralism was attributed to the reduction in farmland. Rainfall variability – land use change linkages were most significant in 1999 that recorded the least rainfall and had the lowest mean, maximum and sum of the NDVI. Grahamstown had the most significant rainfall-NDVI trends as it had the lowest NDVIs in 1999 when rainfall was lowest, the highest NDVI in 1989 when rainfall was highest and moderate NDVIs in 2009 when rainfall was moderate. Vegetation at the IT was characterized by a dense thicket with diverse growth forms of canopy trees, woody shrubs, succulent shrubs and ephemerals which mostly had the C3 type of pathway. This was in contrast with the IT soil isotopy that showed more positive C isotope ratios, indicating a switch between C3 and CAM photosynthesis in original vegetation. Most of the canopy trees had disappeared in the DT to be replaced by herbs, shrubs and grasses. As such, there was a huge difference in isotope ratios between DT plants and soils with the plants having mostly C3 metabolism while the soil showed a predominance of CAM plants in previous vegetation, indicating significant changes in land cover. The G site mostly comprised the grasses Themeda triandra and Panicum maximum and a few herbs. It maintained a dominance of C4 metabolism in both plants and soils showing very little change in species composition over the years. Because of the higher species diversity at IT, its soil organic C was quite high reaching levels of 3.4 percent (i.e. 3.4 t C / ha) in the top 10 cm then decreasing with depth (p < 0.001); but was moderate at DT (1.1-1.3 percent) and very low at G ( 0.5 percent C) (p < 0.001). In the same manner above-ground biomass was highest at IT i.e. 330 000 kg/ha; but was only 22 000 kg/ha in DT and as low as 6 700 kg/ha in G vegetation. High biomass at IT was mostly attributed to the succulent shrub Portulacaria afra and the canopy trees Euclea undulate, Rhus longispina and Schotia afra. This above-ground biomass translated to biomass C amounts of 158 000 kg/ha at IT, 10 600 kg/ha at DT and 3 200 kg/ha at G. Thus the IT had the highest while G the least and DT moderate plant and soil C sequestration ability. In all, the conversion of IT to DT led to a net loss of 147 000 Kg of biomass C / ha and 12 000kg less organic C / ha of land. Soil carbon dioxide effluxes were however variable between seasons as they were affected by differences in soil properties and seasonal weather patterns. High soil moisture levels (up to 16 percent gravimetric moisture) resulted in reduced soil penetration resistance (1 to 4 Kg/cm2) which raised effluxes at G and DT sites (up to 1.2 μmols m-2 sec-1) in winter, while low moisture (2 percent) resulted in hard dry soil (14 Kgm-2 penetration resistance) with suppressed CO2 effluxes in spring (0.2 μmols m-2 sec-1) especially in DT and G soils. Rising temperature generally caused accelerated gas emissions but only when moisture was not limiting (as was the case in IT). Thus the high summer temperatures (up to 40oC) gave lower effluxes especially in DT and G (< 1 μm-2sec-1) due to limited moisture supply (< 10 percent); while the Autumn period that had very high temperature (up to 48 oC) and good moisture (up to 16 percent) saw accelerated soil CO2 emissions (averaging 2 μmols m-2 sec-1) from all cover types. The high biomass and litter fall at IT served as ready substrate for soil respiration as long as moisture was not limiting and temperatures were favourable, while reduced cover at DT resulted in poor moisture conservation and creation of hard dry soils in spring and summer with reduced respiration. It was concluded that the DT had high CO2 effluxes in winter and reduced emissions in summer; while the opposite was true for the IT. All the cover types had minimal CO2 effluxes in spring and accelerated emissions in autumn. The grassland on the other hand was a fairly moderate source or sink of CO2 in most seasons compared with the other two covers. It was observed that an environment of good moisture and low-moderate temperatures (such as that in the winter) minimises effluxes while maintaining good plant productivity. It was concluded that thicket vegetation is a good sink of carbon that should be preserved in its natural condition to optimize its carbon sequestration potential. All three land covers served as sources or sinks of CO2 depending on soil and seasonal conditions. Thus high moisture and low penetration resistance generally increased effluxes of thicket ecosystems. The effect of increasing temperature on effluxes was only significant when moisture was not limiting. Conditions of good moisture and low-moderate temperatures gave reasonable amounts of effluxes while maintaining good plant productivity. Though the dry soil conditions significantly reduced effluxes in all land covers; they were not desirable since they decreased plant productivity and ultimately its C sequestration potential. Moreover, prolonged dry conditions only serve to exacerbate recovery of thicket plants as they increase mortality of canopy species in degraded and transformed areas in comparison with intact thicket.
115

Problématique des impacts de la gestion par éclusées des aménagements hydroélectriques sur les populations de poissons : caractérisation des régimes d’éclusées et du niveau de perturbation hydrologique / Characterization of hydrological disturbance due to hydropeaking regimes and definition of an indicator : reflection on mitigation measures of impacts on fish populations

Courret, Dominique 19 December 2014 (has links)
La gestion par éclusées des aménagements hydroélectriques (plus de 150 en France) pour la production d'énergie de pointe engendre de brusques variations de débit sur les cours d'eau et est susceptible d’altérer la composition, l’abondance et la structure des populations de poissons et d’invertébrés, sur de longues distances. Les objectifs de cette thèse ont été (1) de développer une méthode de caractérisation des éclusées au sein des hydrogrammes, ainsi qu'un indicateur synthétique du niveau de perturbation hydrologique, et (2) de progresser dans la définition des mesures de mitigation des impacts des éclusées sur les poissons. A partir de l'analyse de 97 stations et 1575 années de données de débit, les gradients des variations naturelles de débit ont tout d’abord été caractérisés sur 8 gammes entre 5% et 4 fois le débit moyen interannuel (module). Des formules représentant les variations de débit « les plus rapides possibles naturellement » ont été construites en tenant compte du type de variation (hausse ou baisse), de la taille du cours d'eau (via le module) et de la gamme de débit sur laquelle se déroule la variation, pour ensuite discriminer les éclusées des événements naturels. A partir de l'analyse de 80 stations et 491 années de données de débit influencées par les éclusées, une méthode a été mise au point pour repérer au sein des hydrogrammes les éclusées dont les caractéristiques sont au-delà de ce qui peut se rencontrer en hydrologie naturelle, à partir de 3 critères : une amplitude minimale (≥ à 10% du module et ≥ à 20% du débit de base de l’éclusées), un gradient minimal (> au gradient naturel maximal) et une limite haute sur le débit maximum (pour éliminer les événements de crues). Une grande variabilité des régimes d'éclusées du fait de la diversité des aménagements hydroélectriques et des fluctuations des apports hydrologiques et de la demande énergétique, a été constatée et illustrée […]. / Hydropeaking management of hydroelectric facilities (more than 150 in France) generates sudden changes in flow on the river and can affect the composition, the abundance and the structure of fish and invertebrates populations over long distances. The objectives of this thesis were (1) to develop a method for characterizing hydropeaks within hydrograph and a synthetic indicator of hydrological disturbance, and (2) to progress in defining mitigation measures of hydropeaking impacts on fish. From the analysis of 97 stations and 1575 years of flow data, rate of change of natural flow variations have been characterized within 8 ranges between 5% and 4 times the mean inter-annual discharge. Formulas representing the "fastest variations possible naturally" and taking into account the type of change (increase or decrease), the size of the stream (via the mean inter-annual discharge) and the flow range over which the variation takes place have been constructed and then used to discriminate hydropeaks and natural events. From the analysis of 80 stations and 491 years of flow data affected by hydropeaks, a method was developed to identify, within the hydrograph, hydropeaks whose characteristics are beyond what can occur in natural hydrology, using 3 criteria: a minimum range (≥ 10% of the mean inter-annual discharge and ≥ 20% of the hydropeak base flow), a minimal rate of change (> to the maximum natural rate of change) and an upper limit on the maximum flow rate (to remove flood events). A large variation in hydropeaking regimes, due to the diversity of hydroelectric schemes and fluctuations in incoming flow and energy demand, was observed and illustrated […]
116

Coupled Kinetic and Mechanistic Study of Carbonation of Silicate Materials with Tailored Transport Behaviors for CO2 Utilization

Rim, Guanhe January 2020 (has links)
Since the industrial revolution, the atmospheric CO2 concentration has steadily increased due to the combustion of fossil fuels, reaching 410 ppm. According to the 2018 IPCC report, it was recognized that the anthropogenic greenhouse gas emissions caused by human activities are major drivers for global warming of 1.0 oC above the pre-industrial level. Due to the unprecedented scale of human driven CO2 emission and its environmental impact, the mitigation of climate change requires a wide range of multifaceted solutions. Thus, enormous global efforts have been placed on the development of Carbon Capture, Utilization, and Storage (CCUS) to mitigate CO2 emissions in the immediate future. Most recent reports by the U.S. National Academies and the Mission Innovation presented that ex-situ carbon mineralization is a CO2 utilization technology with a great carbon storage potential and a large market size. Also, fixing CO2 into a solid matrix of carbonate minerals is one of the most permanent methods for carbon storage. Although the ex-situ carbon mineralization presents many advantages and great potential as CCUS technology, its commercialization has been limited due to the mammoth scale of the process, slow reaction kinetic between CO2 and silicate minerals, and high energy and operating cost. In order to minimize energy and chemical (acid and base) consumption of this technology, recent researches have been focused on a two-step carbon mineralization via Pco2 swing using highly reactive heat-treated serpentine mineral. However, the elemental (Mg and Si) extractions from the complex silicate structures of heat-treated serpentine are still poorly understood and a more fundamental understanding of the Pco2 swing process is required to develop a commercial-scale plant. Thus, the objectives of this study are directed toward addressing these technical challenges. The effect of operating conditions, such as temperature, slurry density, and CO2 partial pressure, on the dissolution of heat-treated serpentine and subsequent Mg-carbonate precipitation behaviors, were studied to provide a fundamental understanding of the Pco2 swing carbon mineralization process of highly reactive silicate materials. The dissolution experiments with a wide range of temperature and slurry densities provided valuable insights into the formation of the Si-rich passivation layer and its role in the mass transfer limitation during mineral dissolution. The heat-treated serpentine dissolution behaviors with chemical additives (ligand) were also investigated to overcome the effect of the Si-rich passivation layer on Mg extraction kinetics. What is more, a unique internal grinding system was proposed and integrated with the Pco2 swing process to physically remove the Si-rich passivation layer. The diffusion-limited slow elemental (Mg and Si) extraction from the heat-treated serpentine silicate structures was significantly enhanced in the internal grinding system. A stress intensity, which is proportional to the energy transferred from grinding media to the heat-treated serpentine particles during a stress event, was used to describe the effect of the reaction parameters on the extent of the physical activation and the enhancements in mineral dissolution. For the fundamental understanding of the complex dissolution behaviors of heat-treated serpentine, the changes in the silicate structures (Q0 – Q4) of heat-treated Mg-bearing mineral (serpentine) exposed to a CO2-water system (carbonic acid) was investigated using 29Si MAS NMR and XRPD. The identified silicate structures were employed to provide insight into how Mg and Si are liberated from the different silicate structures during the dissolution process. Thermodynamic and kinetic modeling was performed to understand the Mg-carbonate precipitation behaviors in the Pco2 swing process. The effects of carbonic anhydrase, seed particles, and ligand (citrate) on precipitation behaviors were studied to improve the precipitation kinetics. This approach will bring a great paradigm shift in the energy and environmental field since the less energy-intensive and low-cost ex-situ carbon mineralization process via Pco2 swing will be able to allow long-term and sustainable carbon utilization.
117

Physio-Chemical Evaluation and Functional Assessment of Native Wetland Soils and Organic Amendments for Freshwater Mitigation Wetlands

Stockman, Emily K.D. 01 January 2007 (has links) (PDF)
ABSTRACT PHYSIO-CHEMICAL EVALUATION AND FUNCTIONAL ASSESSMENT OF NATIVE WETLAND SOILS AND ORGANIC AMENDMENTS FOR FRESHWATER MITIGATION WETLANDS MAY 2007 EMILY K.D. STOCKMAN, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Dr. Peter Veneman Due to the history of wetland loss within the United States a National “No Net Loss” policy was adopted in 1988. This policy requires the creation of mitigation wetlands to replace lost and/or damaged natural wetlands. The role of soil in natural wetland systems is key in providing a number of ecology functions, such as the supply of wetland plant nutrients and the retention of nonpoint source pollutants. Nonetheless, Federal and Massachusetts guidelines regarding the creation of soil and the utilization of organic amendments in mitigation wetlands lack specific parameters and thresholds. This research compares the chemical and physical properties of two commercially available composts and two natural wetland soils and evaluates these materials as possible pollutant sources and sinks. The results of the characterization study demonstrate significant differences between the compost samples and the wetland soils in regards to the following properties: organic matter content, pH, polarity, total nutrients (P, K, B, Zn, Fe, Al, Cd, Ni, Cr) and extractable nutrients (P, K, Ca, B, Mn). These physio-chemical properties influence the functions of supplying plant nutrients and retaining nonpoint source pollutants such as excessive nutrients and herbicides. The results of the nutrient release studies indicate that the compost samples behave as potential sources of excessive levels of phosphorus and nitrate. In addition, the pollutant retention studies concluded that the compost samples sorbed lower amounts of phosphorus under aerobic conditions and lower amounts of the commonly-used herbicide, 2,4-D, as compared to the wetland soils. Overall, the differences in both physio-chemical properties and the behavior of the composts as compared with the wetlands soils as well as each other, substantiate the necessity to re-evaluate Federal and Massachusetts guidelines pertaining to mitigation wetland soil and amendments. Based on the results of this study the following minimal analyses are recommended: organic matter content, pH, total nutrients and extractable nutrients. In addition, based on the phosphorus release and retention studies the following thresholds are recommended to prohibit the release of excessive levels of phosphorus into the mitigation wetland and adjacent aquatic systems: Morgan’s extractable P content ≤ 25 mg kg-1 and/or the total P content ≤ 1286 mg kg-1.
118

Wetland Regulation and Mitigation: A Case Study from Twinsburg, Ohio

Clarke Thrush, Eliza C. January 2009 (has links)
No description available.
119

Towards effective planning and management of urbanisation to mitigate climate change : a case of the city of Polokwane, South Africa

Mokoele, Ngoako Johannes January 2021 (has links)
Thesis (Ph.D. Administration (Development Planning and Management)) -- University of Limpopo, 2021 / The study aims to evaluate the effectiveness in planning for and management of urbanisation towards climate change mitigation at the City of Polokwane, Polokwane Local Municipality in the Limpopo Province. In Africa, various studies have demonstrated that unplanned urbanisation has resulted in increasing Greenhouse Gas emissions, which has contributed to the intensification of climate change. Although every country has contributed to climate change, African countries have blamed the current climatic conditions (floods, drought, changing precipitation patterns, sea-level rise, heatwaves and high temperature) on the excessive development alternatives that are highly polluting from the developed countries. In South Africa, the Spatial Planning Land Use Management Act (SPLUMA) is an important planning instrument to plan and manage urbanisation. Although there has been a transformation of legislative framework in South Africa, its implementation remains unreformed. The study adopted a mixed method approach to integrate the strengths of both the qualitative and quantitative methods. The study was undertaken at four areas around the City of Polokwane, namely Legae le Batho, Serala View, Emdo Park and Flora Park by engaging with the local communities on their perceptions regarding the planning and management practices within the municipality. The findings of the study indicate that there is a gap between the municipality and the local communities in the planning and management of urbanisation. The collaboration between the communities and Polokwane Local Municipality in planning serves as a strategy for efficient climate change mitigation. The use of solar systems for street lights, solar geysers, hybrid system (solar and batteries) and gas application can significantly reduce electricity consumption, which is currently generated from the combustion of fossil fuels. Therefore, the study recommends implementation of bio-digesters and solar plants to mitigate climate change. The study recommends proper alignment between the Polokwane Local Municipality and Capricorn District Municipality in terms of climate change mitigation to ensure effective implementation of project initiatives such as bio digesters (for gas generation) and solar plants for electricity generation.
120

Riparian vegetation responses to hydropeaking : Experimental study on germination and performance of plants along rivers regulated by hydropower dams in northern Sweden

Fredriksson, Emelie January 2016 (has links)
Riparian vegetation is one of the most complex and abundant ecosystems in the world and it provides important ecosystem services. These services are affected by electricity production from hydropower dams. Hydropower accounts for 16% of the global electricity production and almost 50% in Sweden. One effect of hydropower is sub-daily fluctuations of water level caused by the turbines being turned on and off according to electricity demand. This is referred to as hydropeaking and has largely unknown effects on the fluvial ecosystem, and especially on the riparian vegetation. No studies have been made on the effects of hydropeaking on riparian vegetation. In this study, three native plants (Carex acuta, Betula pubescens and Salix phylicifolia x myrsinifolia) and one non-native plant (Helianthus annuus) were used as indicators (i.e., phytometers) for the effects of hydropeaking along two rivers from northern Sweden; one used for hydropower production and the other free flowing. From each of the four species, seedlings of two sizes and seeds were transplanted into five different river reaches and bank elevations along a hydropeaking gradient from none to high hydropeaking intensity. C. acuta and S. phylicifolia x myrsinifolia showed significant positive relationships to the hydropeaking gradient, likely due to their natural high tolerance to frequent inundation events. Therefore, they are suitable for restoration of river shores along reaches affected by hydropeaking. In contrast, B. pubescens was negatively related to the hydropeaking gradient, losing leaves and biomass with increasing hydropeaking intensities. It turned out to be the most sensitive species among the ones used in the experiment making it suitable as an indicator. H. annuus showed no response and therefore did not serve as impact indicator or for restoration. Germination for all native species was significantly lower along the reaches affected by hydropeaking which indicates a strong connection between hydropeaking and germination. These findings showed that recruitment becomes a bottleneck in riparian communities’ conservation along rivers affected by hydropeaking, and highlight the importance of mitigation actions focused on favoring riparian species seeds’ germination.

Page generated in 0.0362 seconds