• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 40
  • 26
  • 2
  • 1
  • Tagged with
  • 174
  • 174
  • 174
  • 75
  • 75
  • 74
  • 71
  • 70
  • 68
  • 42
  • 37
  • 37
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A model-driven design-space exploration tool for the HIPAO 2 methodology / Ferramenta de exploração de espaço de projeto baseada em modelos para a metodologia HIPAO2

Lerm, Rafael Andréas Raffi January 2015 (has links)
Hoje em dia, desenvolvedores de sistemas embarcados enfrentam uma crescente complexidade de projeto, tanto nas aplicações quanto nas plataformas usadas para executá-las. O uso de plataformas complexas faz com que os engenheiros precisem fazer escolhas não-triviais, e muitas vezes contra-intuitivas durante a fase de projeto. Para permitir que os projetistas gerenciem esta complexidade, o uso de metodologias baseadas em modelos tem atraído atenção, e dentro deste contexto, a metodologia HIPAO2 está sendo desenvolvida dentro da UFRGS. Dentre os problemas que os engenheiros precisam enfrentar, o mapeamento entre tarefas e processadores em sistemas multiprocessados heterogêneos é um problema NP-completo, onde o espaço de projeto rapidamente se torna grande demais para que seja explorado satisfatoriamente de maneira manual. Este trabalho detalha a extensão das ferramentas que suportam a metodologia HIPAO2, de maneira a incluir facilidades de Exploração de Espaço de Projeto semi-automática para a solução deste problema. A ferramenta proposta faz uso de um algoritmo genético multiobjetivo para evidenciar tradeoffs existentes no projeto, e algoritmos de análise de aplicações modeladas como synchronous dataflow para avaliar possíveis mapeamentos sem um custo computacional proibitivo. / Designers of today’s embedded systems are faced with increasing complexity both in the applications being developed and the platforms they run on. The use of complex platforms means that the engineers need to make non-trivial and many times non-intuitive decisions during the design phase. To help developers work with this complexity, model-driven techniques are gaining attention, and in this context, the HIPAO2 model-driven engineering methodology is being developed at UFRGS. Among the problems that designers must solve, the task-to-processor mapping in heterogeneous multiprocessor systems is an NP-complete problem and the design space will quickly become too large to be explored adequately by humans. This work details the extension of the tools that support HIPAO2 to include semiautomatic Design-Space Exploration capabilities for the mapping problem. The proposed tool includes the use of a multiobjective genetic algorithm to make tradeoffs explicit to the designers; it also uses synchronous dataflow analysis algorithms to evaluate potential alternatives with a reasonable computational cost.
22

A model-driven design-space exploration tool for the HIPAO 2 methodology / Ferramenta de exploração de espaço de projeto baseada em modelos para a metodologia HIPAO2

Lerm, Rafael Andréas Raffi January 2015 (has links)
Hoje em dia, desenvolvedores de sistemas embarcados enfrentam uma crescente complexidade de projeto, tanto nas aplicações quanto nas plataformas usadas para executá-las. O uso de plataformas complexas faz com que os engenheiros precisem fazer escolhas não-triviais, e muitas vezes contra-intuitivas durante a fase de projeto. Para permitir que os projetistas gerenciem esta complexidade, o uso de metodologias baseadas em modelos tem atraído atenção, e dentro deste contexto, a metodologia HIPAO2 está sendo desenvolvida dentro da UFRGS. Dentre os problemas que os engenheiros precisam enfrentar, o mapeamento entre tarefas e processadores em sistemas multiprocessados heterogêneos é um problema NP-completo, onde o espaço de projeto rapidamente se torna grande demais para que seja explorado satisfatoriamente de maneira manual. Este trabalho detalha a extensão das ferramentas que suportam a metodologia HIPAO2, de maneira a incluir facilidades de Exploração de Espaço de Projeto semi-automática para a solução deste problema. A ferramenta proposta faz uso de um algoritmo genético multiobjetivo para evidenciar tradeoffs existentes no projeto, e algoritmos de análise de aplicações modeladas como synchronous dataflow para avaliar possíveis mapeamentos sem um custo computacional proibitivo. / Designers of today’s embedded systems are faced with increasing complexity both in the applications being developed and the platforms they run on. The use of complex platforms means that the engineers need to make non-trivial and many times non-intuitive decisions during the design phase. To help developers work with this complexity, model-driven techniques are gaining attention, and in this context, the HIPAO2 model-driven engineering methodology is being developed at UFRGS. Among the problems that designers must solve, the task-to-processor mapping in heterogeneous multiprocessor systems is an NP-complete problem and the design space will quickly become too large to be explored adequately by humans. This work details the extension of the tools that support HIPAO2 to include semiautomatic Design-Space Exploration capabilities for the mapping problem. The proposed tool includes the use of a multiobjective genetic algorithm to make tradeoffs explicit to the designers; it also uses synchronous dataflow analysis algorithms to evaluate potential alternatives with a reasonable computational cost.
23

Use of Global Consistency Checking for Exploring and Refining Relationships between Distributed Models : A Case Study

Rad, Yasaman Talaei, Jabbari, Ramtin January 2012 (has links)
Context. Software systems, becoming larger and more complex day-by-day, have resulted in software development processes to become more complex to understand and manage. Many companies have started to adapt distributed software engineering practices that would allow them to work in distributed teams at different organizations and/or geographical locations. For example, model-driven engineering methods are being used in such global software engineering projects. Among the activities in model-based software development, consistency checking is one of the widely known ones. Consistency checking is concerned with consistent models; in particular, having a consistent group of multiple models for a whole system, e.g., multiple models produced by distributed teams. Objectives. This thesis aims to find out how ‘Global Consistency Checking (GCC)’ can be utilized for exploring inconsistency problems between distributed models; particularly among UML class diagram relationships (in terms of consistency), as well as how GCC can be scaled with large number of models and relationships. Thereby, these inconsistencies are also aimed to incrementally resolve in our approach. Methods. We made a review in distributed software development domain and model management, in particular, methods of consistency checking between ‘Distributed Models (DM)’. Next, we conducted two case studies in two problem domains in order to apply our ‘consistency checking methodology’. We concurrently constructed and implemented new consistency rules, most of which are gathered from literatures and brainstorming with our coordinators. Generally, the method contains implementing different models of the case studies with a tool support and trying to figure out overlaps, merging models and checking the merged model against the consistency rules, and evaluating the results of GCC. We mainly addressed issues focused on consistency checking of individual models and the mapping between them e.g., pair-wise consistency checking (PCC), which are incapable of fully addressing problems against any consistency rules encountered in distributed environments. Results. We have identified seven types of inconsistency, which are divided in two groups named ‘Global inconsistency’ and ‘Pair-wise inconsistency’. In the first case study, we have 94 global inconsistencies and 73 pair-wise. In the second one, 14 global and 25 pair-wise inconsistencies are resulted. During ‘Resolution approach’, we followed six steps as a ‘systematic procedure’ for resolving these inconsistencies and constructed new merged model in each iteration. The initial merged model (inconsistent model) as an input for the first step has 1267 elements, and the consistent merged model (the output) from the sixth step has 686 elements. ‘time duration’ and ‘required effort’ for checking consistency against each ‘consistency rule’ were recorded, analyzed and illustrated in Sections 4.1.5 and 4.2.4. Conclusions. We concluded that GCC enables us to explore the inconsistencies, inclusive of resolving them and therefore, refining the relationships between different models, which are difficult to detect by e.g., a pair-wise method. The most important issues are: The number of model comparisons conducted by PCC, The inability of PCC for identifying some inconsistencies, Model relationships refinement and classification based on PCC approach will not lead to a final consistent DM, whereas, GCC guarantees it. Consistency rules application, inconsistency identification and resolving them could be generalized to any UML class diagram model representing a problem domain within the fields of consistency checking in software engineering. / 0046760850792, 0046737749752
24

Toward Preservation of Extra-Functional Properties for Model-Driven Component-Based Software Engineering of Embedded Systems

Ciccozzi, Federico January 2012 (has links)
Model-driven and component-based software engineering have been widely recognized as promising paradigms for development of a wide range of systems. Moreover, in the embedded real-time domain, their combination is believed to be helpful in handling the ever-increasing complexity of such systems design.However, in order for these paradigms and their combination to definitely break through at an industrial level for development of embedded real-time systems, both functional and extra-functional properties need to be addressed at each level of abstraction. This research focuses on the preservation of extra-functional properties. More specifically, the aim is to provide support for easing such preservation throughout the entire development process at different abstraction levels.The main outcome of the research work is a round-trip engineering approach aiding the preservation of extra-functional properties by providing code generators, supporting monitoring and analysis of code execution, and then enabling back-propagation of the results to modelling level. In this way, properties that can only be roughly estimated statically are evaluated against runtime values and this consequently allows to optimize the design models for ensuring preservation of analysed extra-functional properties. Moreover, a solution for managing evolution of computational context in which extra-functional properties are defined by means of validity analysis is provided. Such solution introduces a new language for the description of the computational context in which a given property is provided and/or computed by some analysis, enables detection of changes performed to the context description, and analyses the possible impacts on the extra-functional property values based on a precise representation of differences between previous and current version of the model.
25

Integrating Formal Methods with Model-Driven Engineering

Adesina, Opeyemi January 2017 (has links)
This thesis presents our method to integrate formal methods with model-driven engineering. Although a large amount of literature exists with the goal of facilitating the adoption of formal methods for educational and industrial practice, yet the adoption of formal methods in academia and industry is poor. The goal of this research is to improve the adoption of formal methods by automating the generation of formal methods code while maintaining scalability and bridging the gaps between formal analysis and actual implementation of the complete system. Our approach is based on generating formal representations of software abstractions expressed in a textual language, called Umple, which is derived from UML. Software abstractions of interest include class models and state machines. For state machines, we address concerns such as composite and concurrent states separately. The resulting systems are analyzable by back-end analysis engines such as Alloy and nuXmv or NuSMV for model checking. To ensure correctness of our approach, we have adopted simulation, empirical studies and rigorous test-driven development (TDD) methodologies. To guarantee correctness of state machine systems under analysis (SSUAs), we present methods to automatically generate specifications to analyze domain-independent properties such as non-determinism and reachability analysis. We apply these methods in various case studies; certify their conformance with sets of requirements and uncover certain flaws. Our contributions include a) The overall approach, involving having the developer write the system in Umple and generating both the formal system for analysis and the final code from the same model; b) a novel approach to encode SSUAs even in the presence of and-cross transitions; c) a fully automated approach to certify an SSUA to be free from nondeterminism even in the presence of unbounded domains and multiple and-cross transitions within the same enclosing orthogonal state; d) an empirical study of the impact of abstraction on some performance parameters; and e) a translator from Umple to Alloy and SMV.
26

Automating the development of Physical Mobile Workflows. A Model Driven Engineering approach

Giner Blasco, Pau 17 May 2010 (has links)
La visión de la "Internet de las Cosas", hace énfasis en la integración entre elementos del mundo real y los Sistemas de Información. Gracias a tecnologías de Identificación Automática (Auto-ID) cómo RFID, los sistemas pueden percibir objetos del mundo físico. Cuando éstos participan de manera activa en los procesos de negocio, se evita el uso de los seres humanos como transportadores de información. Por tanto, el número de errores se reduce y la eficiencia de los procesos aumenta. Aunque actualmente ya es posible el desarrollo de estos sistemas, la heterogeneidad tecnológica en Auto-ID y los requisitos cambiantes de los procesos de negocio dificultan su construcción, mantenimiento y evolución. Por lo tanto, es necesaria la definición de soluciones que afronten la construcción de estos sistemas mediante métodos sólidos de desarrollo para garantizar la calidad final del producto. Partiendo de las bases de la Ingeniería Dirigida por Modelos (MDE), esta tesis presenta un proceso de desarrollo para la construcción de este tipo de sistemas. Este proceso cubre desde la especificación del sistema hasta su implementación, centrándose en los requisitos particulares del enlace entre los mundos físico y virtual. Para la especificación de los sistemas se ha definido un Lenguaje de modelado adaptado a los requisitos de la "Internet de las Cosas". A partir de esta especificación se puede obtener una solución software de manera sistemática. Como validación de la propuesta, ésta se ha aplicado en la práctica con usuarios finales. Pese a que el proceso de desarrollo no ofrece una automatización completa, las guías ofrecidas y la formalización de los conceptos implicados ha demostrado ser útil a la hora de elevar el nivel de abstracción en el desarrollo, evitando el esfuerzo de enfrentarse a detalles tecnológicos. / Giner Blasco, P. (2010). Automating the development of Physical Mobile Workflows. A Model Driven Engineering approach [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8272 / Palancia
27

Managing Assurance Cases in Model Based Software Systems

Kokaly, Sahar 14 June 2019 (has links)
Software has emerged as a significant part of many domains, including financial service platforms, social networks, medical devices and vehicle control. In critical domains, standards organizations have responded to this by creating regulations to address issues such as safety, security and privacy. In this context, compliance of software with standards has emerged as a key issue. For companies, compliance is a complex and costly goal to achieve and is often accomplished by producing so-called assurance cases, which demonstrate that the system indeed satisfies the property imposed by a standard (e.g., safety, security, privacy) by linking evidence to support claims made about the system. However, as systems undergo evolution for a variety of reasons, including fixing bugs, adding functionality or improving system quality, maintaining assurance cases multiplies the effort. Increasingly, models and model-driven engineering are being used as a means to facilitate communication and collaboration between the stakeholders in the compliance value chain and, further, to introduce automation into regulatory compliance tasks. A complexity problem also exists with the proliferation of software models in model-based software development, and the field of Model Management has emerged to address this challenge. Model Management focuses on a high-level view in which entire models and their relationships (i.e., mappings between models) can be manipulated using specialized operators to achieve useful outcomes. In this thesis, we exploit this connection between model driven engineering and regulatory compliance, and explore how to use Model Management techniques to address software compliance management issues, focusing on assurance case change impact assessment, evolution and reuse. We support the presented approach with tooling and a case study. Although the main contributions of this thesis are not domain specific, for validation, we ground our approaches in the automotive domain and the ISO 26262 standard for functional safety of road vehicles. / Thesis / Doctor of Philosophy (PhD)
28

An Application Framework for a Power-Aware Processor Architecture

Mandlekar, Anup Shrikant 31 August 2012 (has links)
The instruction-set based general purpose processors are not energy-efficient for event-driven applications. The E-textiles group at Virginia Tech proposed a novel data-flow processor architecture design to bridge the gap between event-driven applications and the target architecture. The architecture, although promising in terms of performance and energy-efficiency, was explored for limited number of applications. This thesis presents a model-driven approach for the design of an application framework, facilitating rapid development of software applications to test the architecture performance. The application framework is integrated with the prior automation framework bringing software applications at the right level of abstraction. The processor architecture design is made flexible and scalable, making it suitable for a wide range of applications. Additionally, an embedded flash memory based architecture design for reduction in the static power consumption is proposed. This thesis estimates significant reduction in overall power consumption with the incorporation of flash memory. / Master of Science
29

UM PROCESSO INTEGRADO PARA QUALIDADE EM MODEL-DRIVEN ENGINEERING / AN INTEGRATED PROCESS FOR QUALITY IN MODEL DRIVEN ENGINEERING

Copetti, Marco Antonio 11 July 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Model-Driven Engineering a new software development paradigm concept. The paradigm predicts that software development core artifact ceases to be the code and becomes the models and software architecture. The concept does not come without impacts to the supporting structures of development. The way the software development process is seen, executed and structured is obliterated. Software engineering has been expanding the its boundaries, creating and tailoring settings, methods and structures to the new paradigm. Software quality is one of the boundaries of software engineering that is expanded, as well as the software development process. This paper presents a study on the evolution of software quality and on the MDE process. Based on this, we propose a process framework for software development in Model-Driven Engineering, integrating quality concepts that were investigated and giving a holistic view to MDE process. The framework was subject to a conceptual evaluation and had its use illustrated. The framework evaluation showed that the proposed framework is adequate, covering all constructs suggested for a good software development process. The framework ultimately aims to integrate and create synergy between the parties participating in model-driven development. / Model-Driven Engineering é o conceito de um novo paradigma de desenvolvimento de software. Esse paradigma prevê que o desenvolvimento de software deixe de ter como artefato central o código e que os modelos e a arquitetura de software tomem esse papel. O conceito não surge sem impactos às estruturas de suporte de desenvolvimento. O modo como o processo de desenvolvimento de software é visto e executado e as organizações relacionadas a ele são obliteradas. A engenharia de software tem se preocupado em expandir os limites da área, criando e adaptando definições, métodos e estruturas para o novo paradigma. A qualidade de software é um dos conceitos de engenharia de software que precisa ser revisto, assim como o processo de desenvolvimento de software. Este trabalho apresenta um estudo sobre os avanços de qualidade de software e do funcionamento do processo de MDE. A partir disso, propõe-se um framework de processo de desenvolvimento de software para desenvolvimento em Model-Driven Engineering, que integra os conceitos de qualidade investigados e dá visão holística ao desenvolvimento em MDE. O processo foi submetido a uma avaliação conceitual e uma ilustração de uso. Na avaliação o framework mostrou abranger os construtos importantes de processo de software. O framework objetiva ultimamente integrar e criar sinergia entre as partes participantes do desenvolvimento orientado a modelos.
30

A model-based approach for extracting business rules out of legacy information systems / Une approche dirigée par les modéles pour l’extraction de règles métier à partir des systèmes d’informations hérités

Cosentino, Valerio 18 December 2013 (has links)
Le monde des affaires d’aujourd’hui est très dynamique, donc les organisations doivent rapidement adapter leurs politiques commerciales afin de suivre les évolutions du marché. Ces ajustements doivent être propagés à la logique métier présente dans les systèmes d’informations des organisations, qui sont souvent des applications héritées non conçues pour représenter et opérationnaliser la logique métier indépendamment des aspects techniques du langage de programmation utilisé. Par conséquent, la logique métier intégrée au sein du système doit être identifiée et comprise avant d’être modifiée. Malheureusement, ces activités ralentissent la mise à jour du système vers de nouvelles exigences établies dans les politiques de l’organisation et menacent la cohérence des activités commerciales de celle-ci. Afin de simplifier ces activités, nous offrons une approche basée sur les modèles pour extraire et représenter la logique métier, exprimée comme un ensemble de règles de gestion, à partir des parties comportementales et structurelles des systèmes d’information. Nous mettons en œuvre cette approche pour les systèmes écrits en Java et COBOL ainsi que pour les systèmes de gestion de bases de données relationnelles. L’approche proposée est basée sur l’Ingénierie Dirigée par les Modèles, qui fournit une solution générique et modulaire adaptable à différents langages en offrant une représentation abstraite et homogène du système. / Today’s business world is very dynamic and organizations have to quickly adjust their internal policies to follow the market changes. Such adjustments must be propagated to the business logic embedded in the organization’s information systems, that are often legacy applications not designed to represent and operationalize the business logic independently from the technical aspects of the programming language employed. Consequently, the business logic buried in the system must be discovered and understood before being modified. Unfortunately, such activities slow down the modification of the system to new requirements settled in the organization policies and threaten the consistency and coherency of the organization business. In order to simplify these activities, we provide amodel-based approach to extract and represent the business logic, expressed as a set of business rules, from the behavioral and structural parts of information systems. We implement such approach for Java, COBOL and relational database management systems. The proposed approach is based on Model Driven Engineering,that provides a generic and modular solution adaptable to different languages by offering an abstract and homogeneous representation of the system.

Page generated in 0.0366 seconds