• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 12
  • 11
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 112
  • 112
  • 96
  • 49
  • 41
  • 40
  • 40
  • 39
  • 32
  • 24
  • 24
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Logarithmic opinion pools for conditional random fields

Smith, Andrew January 2007 (has links)
Since their recent introduction, conditional random fields (CRFs) have been successfully applied to a multitude of structured labelling tasks in many different domains. Examples include natural language processing (NLP), bioinformatics and computer vision. Within NLP itself we have seen many different application areas, like named entity recognition, shallow parsing, information extraction from research papers and language modelling. Most of this work has demonstrated the need, directly or indirectly, to employ some form of regularisation when applying CRFs in order to overcome the tendency for these models to overfit. To date a popular method for regularising CRFs has been to fit a Gaussian prior distribution over the model parameters. In this thesis we explore other methods of CRF regularisation, investigating their properties and comparing their effectiveness. We apply our ideas to sequence labelling problems in NLP, specifically part-of-speech tagging and named entity recognition. We start with an analysis of conventional approaches to CRF regularisation, and investigate possible extensions to such approaches. In particular, we consider choices of prior distribution other than the Gaussian, including the Laplacian and Hyperbolic; we look at the effect of regularising different features separately, to differing degrees, and explore how we may define an appropriate level of regularisation for each feature; we investigate the effect of allowing the mean of a prior distribution to take on non-zero values; and we look at the impact of relaxing the feature expectation constraints satisfied by a standard CRF, leading to a modified CRF model we call the inequality CRF. Our analysis leads to the general conclusion that although there is some capacity for improvement of conventional regularisation through modification and extension, this is quite limited. Conventional regularisation with a prior is in general hampered by the need to fit a hyperparameter or set of hyperparameters, which can be an expensive process. We then approach the CRF overfitting problem from a different perspective. Specifically, we introduce a form of CRF ensemble called a logarithmic opinion pool (LOP), where CRF distributions are combined under a weighted product. We show how a LOP has theoretical properties which provide a framework for designing new overfitting reduction schemes in terms of diverse models, and demonstrate how such diverse models may be constructed in a number of different ways. Specifically, we show that by constructing CRF models from manually crafted partitions of a feature set and combining them with equal weight under a LOP, we may obtain an ensemble that significantly outperforms a standard CRF trained on the entire feature set, and is competitive in performance to a standard CRF regularised with a Gaussian prior. The great advantage of LOP approach is that, unlike the Gaussian prior method, it does not require us to search a hyperparameter space. Having demonstrated the success of LOPs in the simple case, we then move on to consider more complex uses of the framework. In particular, we investigate whether it is possible to further improve the LOP ensemble by allowing parameters in different models to interact during training in such a way that diversity between the models is encouraged. Lastly, we show how the LOP approach may be used as a remedy for a problem that standard CRFs can sometimes suffer. In certain situations, negative effects may be introduced to a CRF by the inclusion of highly discriminative features. An example of this is provided by gazetteer features, which encode a word's presence in a gazetteer. We show how LOPs may be used to reduce these negative effects, and so provide some insight into how gazetteer features may be more effectively handled in CRFs, and log-linear models in general.
12

Identificação da cobertura espacial de documentos usando mineração de textos / Identification of spatial coverage documents with mining

Vargas, Rosa Nathalie Portugal 08 August 2012 (has links)
Atualmente, é comum que usuários levem em consideração a localização geográfica dos documentos, é dizer considerar o escopo geográfico que está sendo tratado no contexto do documento, nos processos de Recuperação de Informação. No entanto, os sistemas convencionais de extração de informação que estão baseados em palavras-chave não consideram que as palavras podem representar entidades geográficas espacialmente relacionadas com outras entidades nos documentos. Para resolver esse problema, é necessário viabilizar o georreferenciamento dos textos, ou seja, identificar as entidades geográficas presentes e associá-las com sua correta localização espacial. A identificação e desambiguação das entidades geográficas apresenta desafios importantes, principalmente do ponto de vista linguístico, já que um topônimo, pode possuir variados tipos de ambiguidade associados. Esse problema de ambiguidade causa ruido nos processos de recuperação de informação, já que o mesmo termo pode ter informação relevante ou irrelevante associada. Assim, a principal estratégia para superar os problemas de ambiguidade, compreende a identificação de evidências que auxiliem na identificação e desambiguação das localidades nos textos. O presente trabalho propõe uma metodologia que permite identificar e determinar a cobertura espacial dos documentos, denominada SpatialCIM. A metodologia SpatialCIM tem o objetivo de organizar os processos de resolução de topônimos. Assim, o principal objetivo deste trabalho é avaliar e selecionar técnicas de desambiguação que permitam resolver a ambiguidade dos topônimos nos textos. Para isso, foram propostas e desenvolvidas as abordagens de (1)Desambiguação por Pontos e a (2)Desambiguação Textual e Estrutural. Essas abordagens, exploram duas técnicas diferentes de desambiguação de topônimos, as quais, geram e desambiguam os caminhos geográficos associados aos topônimos reconhecidos para cada documento. Assim, a hipótese desta pesquisa é que o uso das técnicas de desambiguação de topônimos viabilizam uma melhor localização espacial dos documentos. A partir dos resultados obtidos neste trabalho, foi possível demonstrar que as técnicas de desambiguação melhoram a precisão e revocação na classificação espacial dos documentos. Demonstrou-se também o impacto positivo do uso de uma ferramenta linguística no processo de reconhecimento das entidades geográficas. Assim, foi demostrada a utilidade dos processos de desambiguação para a obtenção da cobertura espacial dos documentos / Currently, it is usual that users take into account the geographical localization of the documents in the Information Retrieval process. However, the conventional information retrieval systems based on key-word matching do not consider which words can represent geographical entities that are spatially related to other entities in the documents. To solve this problem, it is necessary to enable the geo-referencing of texts by identifying the geographical entities present in text and associate them with their correct spatial location. The identification and disambiguation of the geographical entities present major challenges mainly from the linguistic point of view, since one location can have different types of associated ambiguity. The ambiguity problem causes noise in the process of information retrieval, since the same term may have relevant or irrelevant information associated. Thus, the main strategy to overcome these problems, include the identification of evidence to assist in the identification and disambiguation of locations in the texts. This study proposes a methodology that allows the identification and spatial localization of the documents, denominated SpatialCIM. The SpatialCIM methodology has the objective to organize the Topônym Resolution process. Therefore the main objective of this study is to evaluate and select disambiguation techniques that allow solving the toponym ambiguity in texts. Therefore, we proposed and developed the approaches of (1) Disambiguation for Points and (2) Textual and Structural Disambiguation. These approaches exploit two different techniques of toponym disambiguation, which generate and desambiguate the associated paths with the recognized geographical toponym for each document. Therefore the hypothesis is, that the use of the toponyms disambiguation techniques enable a better spatial localization of documents. From the results it was possible to demonstrate that the disambiguation techniques improve the precision and recall for the spatial classification of documents. The positive effect of using a linguistic tool for the process of geographical entities recognition was also demonstrated. Thus, it was proved the usefulness of the disambiguation process for obtaining a spatial coverage of the document
13

Authorship Attribution Through Words Surrounding Named Entities

Jacovino, Julia Maureen 03 April 2014 (has links)
In text analysis, authorship attribution occurs in a variety of ways. The field of computational linguistics becomes more important as the need of authorship attribution and text analysis becomes more widespread. For this research, pre-existing authorship attribution software, Java Graphical Authorship Attribution Program (JGAAP), implements a named entity recognizer, specifically the Stanford Named Entity Recognizer, to probe into similar genre text and to aid in extricating the correct author. This research specifically examines the words authors use around named entities in order to test the ability of these words at attributing authorship / McAnulty College and Graduate School of Liberal Arts; / Computational Mathematics / MS; / Thesis;
14

On Travel Article Classification Based on Consumer Information Search Process Model

Hsiao, Yung-Lin 27 July 2011 (has links)
The information overload problem becomes imperative with the explosion of information, and people need some agents to facilitate them to filter the information to meet their personal need. In this work, we conduct a research for the article classification in the tourism domain so as to identify articles that meet users¡¦ information need. We propose an information need orientation model in tourism, which consists of four goals: Initiation, Attraction, Accommodation, and Route planning. These goals can be characterized by 13 features. Some of the identified features can be enhanced by WordNet and Named Entity Recognition techniques as supplement techniques. To test the effectiveness of using the 13 features for classification and the relevant methods, we collected 15,797 articles from TripAdvisor.com, the world's largest travel site, and randomly selected 600 articles as training data labeled by two labelers. The experimental results show that our approach generally has comparable or better performance than that of using purely lexical features, namely TF-IDF, for classification, with fewer features.
15

Feature identification framework and applications (FIFA)

Audenaert, Michael Neal 12 April 2006 (has links)
Large digital libraries typically contain large collections of heterogeneous resources intended to be delivered to a variety of user communities. One key challenge for these libraries is providing tight integration between resources both within a single collection and across the several collections of the library with out requiring hand coding. One key tool in doing this is elucidating the internal structure of the digital resources and using that structure to form connections between the resources. The heterogeneous nature of the collections and the diversity of the needs in the user communities complicates this task. Accordingly, in this thesis, I describe an approach to implementing a feature identification system to support digital collections that provides a general framework for applications while allowing decisions about the details of document representation and features identification to be deferred to domain specific implementations of that framework. These deferred decisions include details of the semantics and syntax of markup, the types of metadata to be attached to documents, the types of features to be identified, the feature identification algorithms to be applied, and which features should be indexed. This approach results in strong support for the general aspects of developing a feature identification system allowing future work to focus on the details of applying that system to the specific needs of individual collections and user communities.
16

BioEve: User Interface Framework Bridging IE and IR

January 2010 (has links)
abstract: Continuous advancements in biomedical research have resulted in the production of vast amounts of scientific data and literature discussing them. The ultimate goal of computational biology is to translate these large amounts of data into actual knowledge of the complex biological processes and accurate life science models. The ability to rapidly and effectively survey the literature is necessary for the creation of large scale models of the relationships among biomedical entities as well as hypothesis generation to guide biomedical research. To reduce the effort and time spent in performing these activities, an intelligent search system is required. Even though many systems aid in navigating through this wide collection of documents, the vastness and depth of this information overload can be overwhelming. An automated extraction system coupled with a cognitive search and navigation service over these document collections would not only save time and effort, but also facilitate discovery of the unknown information implicitly conveyed in the texts. This thesis presents the different approaches used for large scale biomedical named entity recognition, and the challenges faced in each. It also proposes BioEve: an integrative framework to fuse a faceted search with information extraction to provide a search service that addresses the user's desire for "completeness" of the query results, not just the top-ranked ones. This information extraction system enables discovery of important semantic relationships between entities such as genes, diseases, drugs, and cell lines and events from biomedical text on MEDLINE, which is the largest publicly available database of the world's biomedical journal literature. It is an innovative search and discovery service that makes it easier to search/navigate and discover knowledge hidden in life sciences literature. To demonstrate the utility of this system, this thesis also details a prototype enterprise quality search and discovery service that helps researchers with a guided step-by-step query refinement, by suggesting concepts enriched in intermediate results, and thereby facilitating the "discover more as you search" paradigm. / Dissertation/Thesis / M.S. Computer Science 2010
17

Identificação da cobertura espacial de documentos usando mineração de textos / Identification of spatial coverage documents with mining

Rosa Nathalie Portugal Vargas 08 August 2012 (has links)
Atualmente, é comum que usuários levem em consideração a localização geográfica dos documentos, é dizer considerar o escopo geográfico que está sendo tratado no contexto do documento, nos processos de Recuperação de Informação. No entanto, os sistemas convencionais de extração de informação que estão baseados em palavras-chave não consideram que as palavras podem representar entidades geográficas espacialmente relacionadas com outras entidades nos documentos. Para resolver esse problema, é necessário viabilizar o georreferenciamento dos textos, ou seja, identificar as entidades geográficas presentes e associá-las com sua correta localização espacial. A identificação e desambiguação das entidades geográficas apresenta desafios importantes, principalmente do ponto de vista linguístico, já que um topônimo, pode possuir variados tipos de ambiguidade associados. Esse problema de ambiguidade causa ruido nos processos de recuperação de informação, já que o mesmo termo pode ter informação relevante ou irrelevante associada. Assim, a principal estratégia para superar os problemas de ambiguidade, compreende a identificação de evidências que auxiliem na identificação e desambiguação das localidades nos textos. O presente trabalho propõe uma metodologia que permite identificar e determinar a cobertura espacial dos documentos, denominada SpatialCIM. A metodologia SpatialCIM tem o objetivo de organizar os processos de resolução de topônimos. Assim, o principal objetivo deste trabalho é avaliar e selecionar técnicas de desambiguação que permitam resolver a ambiguidade dos topônimos nos textos. Para isso, foram propostas e desenvolvidas as abordagens de (1)Desambiguação por Pontos e a (2)Desambiguação Textual e Estrutural. Essas abordagens, exploram duas técnicas diferentes de desambiguação de topônimos, as quais, geram e desambiguam os caminhos geográficos associados aos topônimos reconhecidos para cada documento. Assim, a hipótese desta pesquisa é que o uso das técnicas de desambiguação de topônimos viabilizam uma melhor localização espacial dos documentos. A partir dos resultados obtidos neste trabalho, foi possível demonstrar que as técnicas de desambiguação melhoram a precisão e revocação na classificação espacial dos documentos. Demonstrou-se também o impacto positivo do uso de uma ferramenta linguística no processo de reconhecimento das entidades geográficas. Assim, foi demostrada a utilidade dos processos de desambiguação para a obtenção da cobertura espacial dos documentos / Currently, it is usual that users take into account the geographical localization of the documents in the Information Retrieval process. However, the conventional information retrieval systems based on key-word matching do not consider which words can represent geographical entities that are spatially related to other entities in the documents. To solve this problem, it is necessary to enable the geo-referencing of texts by identifying the geographical entities present in text and associate them with their correct spatial location. The identification and disambiguation of the geographical entities present major challenges mainly from the linguistic point of view, since one location can have different types of associated ambiguity. The ambiguity problem causes noise in the process of information retrieval, since the same term may have relevant or irrelevant information associated. Thus, the main strategy to overcome these problems, include the identification of evidence to assist in the identification and disambiguation of locations in the texts. This study proposes a methodology that allows the identification and spatial localization of the documents, denominated SpatialCIM. The SpatialCIM methodology has the objective to organize the Topônym Resolution process. Therefore the main objective of this study is to evaluate and select disambiguation techniques that allow solving the toponym ambiguity in texts. Therefore, we proposed and developed the approaches of (1) Disambiguation for Points and (2) Textual and Structural Disambiguation. These approaches exploit two different techniques of toponym disambiguation, which generate and desambiguate the associated paths with the recognized geographical toponym for each document. Therefore the hypothesis is, that the use of the toponyms disambiguation techniques enable a better spatial localization of documents. From the results it was possible to demonstrate that the disambiguation techniques improve the precision and recall for the spatial classification of documents. The positive effect of using a linguistic tool for the process of geographical entities recognition was also demonstrated. Thus, it was proved the usefulness of the disambiguation process for obtaining a spatial coverage of the document
18

CUILESS2016: a clinical corpus applying compositional normalization of text mentions

Osborne, John D., Neu, Matthew B., Danila, Maria I., Solorio, Thamar, Bethard, Steven J. 10 January 2018 (has links)
Background: Traditionally text mention normalization corpora have normalized concepts to single ontology identifiers ("pre-coordinated concepts"). Less frequently, normalization corpora have used concepts with multiple identifiers ("post-coordinated concepts") but the additional identifiers have been restricted to a defined set of relationships to the core concept. This approach limits the ability of the normalization process to express semantic meaning. We generated a freely available corpus using post-coordinated concepts without a defined set of relationships that we term "compositional concepts" to evaluate their use in clinical text. Methods: We annotated 5397 disorder mentions from the ShARe corpus to SNOMED CT that were previously normalized as "CUI-less" in the "SemEval-2015 Task 14" shared task because they lacked a pre-coordinated mapping. Unlike the previous normalization method, we do not restrict concept mappings to a particular set of the Unified Medical Language System (UMLS) semantic types and allow normalization to occur to multiple UMLS Concept Unique Identifiers (CUIs). We computed annotator agreement and assessed semantic coverage with this method. Results: We generated the largest clinical text normalization corpus to date with mappings to multiple identifiers and made it freely available. All but 8 of the 5397 disorder mentions were normalized using this methodology. Annotator agreement ranged from 52.4% using the strictest metric (exact matching) to 78.2% using a hierarchical agreement that measures the overlap of shared ancestral nodes. Conclusion: Our results provide evidence that compositional concepts can increase semantic coverage in clinical text. To our knowledge we provide the first freely available corpus of compositional concept annotation in clinical text.
19

Information extraction from pharmaceutical literature

Batista-Navarro, Riza Theresa Bautista January 2014 (has links)
With the constantly growing amount of biomedical literature, methods for automatically distilling information from unstructured data, collectively known as information extraction, have become indispensable. Whilst most biomedical information extraction efforts in the last decade have focussed on the identification of gene products and interactions between them, the biomedical text mining community has recently extended their scope to capture associations between biomedical and chemical entities with the aim of supporting applications in drug discovery. This thesis is the first comprehensive study focussing on information extraction from pharmaceutical chemistry literature. In this research, we describe our work on (1) recognising names of chemical compounds and drugs, facilitated by the incorporation of domain knowledge; (2) exploring different coreference resolution paradigms in order to recognise co-referring expressions given a full-text article; and (3) defining drug-target interactions as events and distilling them from pharmaceutical chemistry literature using event extraction methods.
20

Extrakce informací z textu

Michalko, Boris January 2008 (has links)
Cieľom tejto práce je preskúmať dostupné systémy pre extrakciu informácií a možnosti ich použitia v projekte MedIEQ. Teoretickú časť obsahuje úvod do oblasti extrakcie informácií. Popisujem účel, potreby a použitie a vzťah k iným úlohám spracovania prirodzeného jazyka. Prechádzam históriou, nedávnym vývojom, meraním výkonnosti a jeho kritikou. Taktiež popisujem všeobecnú architektúru IE systému a základné úlohy, ktoré má riešiť, s dôrazom na extrakciu entít. V praktickej časti sa nacházda prehľad algoritmov používaných v systémoch pre extrakciu informácií. Opisujem oba typy algoritmov ? pravidlové aj štatistické. V ďalšej kapitole je zoznam a krátky popis existujúcich voľných systémov. Nakoniec robím vlastný experiment s dvomi systémami ? LingPipe a GATE na vybraných korpusoch. Meriam rôzne výkonnostné štatistiky. Taktiež som vytvoril malý slovník a regulárny výraz pre email aby som demonštroval taktiež pravidlá pre extrahovanie určitých špecifických informácií.

Page generated in 0.0431 seconds