• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 12
  • 11
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 112
  • 112
  • 96
  • 49
  • 41
  • 40
  • 40
  • 39
  • 32
  • 24
  • 24
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Multilingual Transformer Models for Maltese Named Entity Recognition

Farrugia, Kris January 2022 (has links)
The recently developed state-of-the-art models for Named Entity Recognition are heavily dependent upon huge amounts of available annotated data. Consequently, it is extremely challenging for data-scarce languages to obtain significant result. Several approaches have been proposed to circumvent this issue, including cross-lingual transfer learning, which is the leveraging of knowledge obtained by available resources in the source language and transfer it to a target low-resource language.        Maltese is one of the many majorly underresourced languages. The main purpose of this project is to research how recently developed transformer multilingual models (Multilingual BERT and XLM-RoBERTa) perform and to ultimately set up an evaluation benchmark in zero-shot cross-lingual transfer learning for Maltese Named Entity Recognition. The models are fine-tuned on Arabic, English, Italian, Spanish and Dutch. The experiments evaluated the efficacy of the source languages and the use of multilingual data in both the training and validation stages.         The experiments demonstrated that feeding multilingual data to both the training and the validation phases was mostly beneficial to the performance. However, adding it to the validation phase only was generally detrimental. Furthermore, XLM-R achieved overall better scores however, employing mBERT and English as the source language yielded the best performance.
32

Information Extraction of Technical Details From Scholarly Articles

Kaushal, Kulendra Kumar 16 June 2021 (has links)
Researchers have made significant progress in information extraction from short documents in the last few years, including social media interaction, news articles, and email excerpts. This research aims to extract technical entities like hardware resources, computing platforms, compute time, programming language, and libraries from scholarly research articles. Research articles are generally long documents having both salient as well as non-salient entities. Analyzing the cross-sectional relation, filtering the relevant information, measuring the saliency of mentioned entities, and extracting novel entities are some of the technical challenges involved in this research. This work presents a detailed study about the performance, effectiveness, and scalability of rule-based weakly supervised algorithms. We also develop an automated end-to-end Research Entity and Relationship Extractor (E2R Extractor). Additionally, we perform a comprehensive study about the effectiveness of existing deep learning-based information extraction tools like Dygie, Dygie++, SciREX. The research also contributes a dataset containing novel entities annotated in BILUO format and represents the baseline results using the E2R extractor on the proposed dataset. The results indicate that the E2R extractor successfully extracts salient entities from research articles. / Master of Science / Information extraction is a process of automatically extracting meaningful information from unstructured text such as articles, news feeds and presenting it in a structured format. Researchers have made significant progress in this domain over the past few years. However, their work primarily focuses on short documents such as social media interactions, news articles, email excerpts, and not on long documents such as scholarly articles and research papers. Long documents contain a lot of redundant data, so filtering and extracting meaningful information is quite challenging. This work focuses on extracting entities such as hardware resources, compute platforms, and programming languages used in scholarly articles. We present a deep learning-based model to extract such entities from research articles and research papers. We evaluate the performance of our deep learning model against simple rule-based algorithms and other state-of-the-art models for extracting the desired entities. Our work also contributes a labeled dataset containing the entities mentioned above and results obtained on this dataset using our deep learning model.
33

Identifying Single and Stacked News Triangles in Online News Articles - an Analysis of 31 Danish Online News Articles Annotated by 68 Journalists

Njor, Miklas January 2015 (has links)
While news articles for print use one News Triangle, where important information is at the top of the article, online news articles are supposed to use a series of Stacked News Triangles, due to online readers text- skimming habits[1]. To identify Stacked News Triangles presence, we analyse how 68 Danish journalists annotate 31 articles. We use keyword frequency as the measure of popularity. To explore if Named Entities influence News Triangle presence, we analyse Named Entities found in the articles and keywords.We find the presence of an overall News Triangle in 30 of 31 articles, while, for the presence of Stacked News Triangles, 14 of the 31 articles have Stacked News Triangles. For Named Entities in News Triangles we cannot see what their influences is. Nonetheless, we find difference in Named Entity Types in each category (Culture, Domestic, Economy, Sports).
34

Hierarchical Joint Entity Recognition and Relation Extraction of Contextual Entities in Family History Records

Segrera, Daniel 08 March 2023 (has links) (PDF)
Entity extraction is an important step in document understanding. Higher accuracy entity extraction on fine-grained entities can be achieved by combining the utility of Named Entity Recognition (NER) and Relation Extraction (RE) models. In this paper, a cascading model is proposed that implements NER and Relation extraction. This model utilizes relations between entities to infer context-dependent fine-grain named entities in text corpora. The RE module runs independent of the NER module, which reduces error accumulation from sequential steps. This process improves on the fine-grained NER F1-score of existing state-of-the-art from .4753 to .8563 on our data, albeit on a strictly limited domain. This provides the potential for further applications in historical document processing. These applications will enable automated searching of historical documents, such as those used in economics research and family history.
35

Improving Automatic Transcription Using Natural Language Processing

Kiefer, Anna 01 March 2024 (has links) (PDF)
Digital Democracy is a CalMatters and California Polytechnic State University initia-tive to promote transparency in state government by increasing access to the Califor-nia legislature. While Digital Democracy is made up of many resources, one founda-tional step of the project is obtaining accurate, timely transcripts of California Senateand Assembly hearings. The information extracted from these transcripts providescrucial data for subsequent steps in the pipeline. In the context of Digital Democracy,upleveling is when humans verify, correct, and annotate the transcript results afterthe legislative hearings have been automatically transcribed. The upleveling processis done with the assistance of a software application called the Transcription Tool.The human upleveling process is the most costly and time-consuming step of the Dig-ital Democracy pipeline. In this thesis, we hypothesize that we can make significantreductions to the time needed for upleveling by using Natural Language Processing(NLP) systems and techniques. The main contribution of this thesis is engineeringa new automatic transcription pipeline. Specifically, this thesis integrates a new au-tomatic speech recognition service, a new speaker diarization model, additional textpost-processing changes, and a new process for speaker identification. To evaluate the system’s improvements, we measure the accuracy and speed of the newly integrated features and record editor upleveling time both before and after the additions.
36

Rozpoznávání pojmenovaných entit pomocí neuronových sítí / Neural Network Based Named Entity Recognition

Straková, Jana January 2017 (has links)
Title: Neural Network Based Named Entity Recognition Author: Jana Straková Institute: Institute of Formal and Applied Linguistics Supervisor of the doctoral thesis: prof. RNDr. Jan Hajič, Dr., Institute of Formal and Applied Linguistics Abstract: Czech named entity recognition (the task of automatic identification and classification of proper names in text, such as names of people, locations and organizations) has become a well-established field since the publication of the Czech Named Entity Corpus (CNEC). This doctoral thesis presents the author's research of named entity recognition, mainly in the Czech language. It presents work and research carried out during CNEC publication and its evaluation. It fur- ther envelops the author's research results, which improved Czech state-of-the-art results in named entity recognition in recent years, with special focus on artificial neural network based solutions. Starting with a simple feed-forward neural net- work with softmax output layer, with a standard set of classification features for the task, the thesis presents methodology and results, which were later used in open-source software solution for named entity recognition, NameTag. The thesis finalizes with a recurrent neural network based recognizer with word embeddings and character-level word embeddings,...
37

Knowledge Extraction for Hybrid Question Answering

Usbeck, Ricardo 18 May 2017 (has links)
Since the proposal of hypertext by Tim Berners-Lee to his employer CERN on March 12, 1989 the World Wide Web has grown to more than one billion Web pages and still grows. With the later proposed Semantic Web vision,Berners-Lee et al. suggested an extension of the existing (Document) Web to allow better reuse, sharing and understanding of data. Both the Document Web and the Web of Data (which is the current implementation of the Semantic Web) grow continuously. This is a mixed blessing, as the two forms of the Web grow concurrently and most commonly contain different pieces of information. Modern information systems must thus bridge a Semantic Gap to allow a holistic and unified access to information about a particular information independent of the representation of the data. One way to bridge the gap between the two forms of the Web is the extraction of structured data, i.e., RDF, from the growing amount of unstructured and semi-structured information (e.g., tables and XML) on the Document Web. Note, that unstructured data stands for any type of textual information like news, blogs or tweets. While extracting structured data from unstructured data allows the development of powerful information system, it requires high-quality and scalable knowledge extraction frameworks to lead to useful results. The dire need for such approaches has led to the development of a multitude of annotation frameworks and tools. However, most of these approaches are not evaluated on the same datasets or using the same measures. The resulting Evaluation Gap needs to be tackled by a concise evaluation framework to foster fine-grained and uniform evaluations of annotation tools and frameworks over any knowledge bases. Moreover, with the constant growth of data and the ongoing decentralization of knowledge, intuitive ways for non-experts to access the generated data are required. Humans adapted their search behavior to current Web data by access paradigms such as keyword search so as to retrieve high-quality results. Hence, most Web users only expect Web documents in return. However, humans think and most commonly express their information needs in their natural language rather than using keyword phrases. Answering complex information needs often requires the combination of knowledge from various, differently structured data sources. Thus, we observe an Information Gap between natural-language questions and current keyword-based search paradigms, which in addition do not make use of the available structured and unstructured data sources. Question Answering (QA) systems provide an easy and efficient way to bridge this gap by allowing to query data via natural language, thus reducing (1) a possible loss of precision and (2) potential loss of time while reformulating the search intention to transform it into a machine-readable way. Furthermore, QA systems enable answering natural language queries with concise results instead of links to verbose Web documents. Additionally, they allow as well as encourage the access to and the combination of knowledge from heterogeneous knowledge bases (KBs) within one answer. Consequently, three main research gaps are considered and addressed in this work: First, addressing the Semantic Gap between the unstructured Document Web and the Semantic Gap requires the development of scalable and accurate approaches for the extraction of structured data in RDF. This research challenge is addressed by several approaches within this thesis. This thesis presents CETUS, an approach for recognizing entity types to populate RDF KBs. Furthermore, our knowledge base-agnostic disambiguation framework AGDISTIS can efficiently detect the correct URIs for a given set of named entities. Additionally, we introduce REX, a Web-scale framework for RDF extraction from semi-structured (i.e., templated) websites which makes use of the semantics of the reference knowledge based to check the extracted data. The ongoing research on closing the Semantic Gap has already yielded a large number of annotation tools and frameworks. However, these approaches are currently still hard to compare since the published evaluation results are calculated on diverse datasets and evaluated based on different measures. On the other hand, the issue of comparability of results is not to be regarded as being intrinsic to the annotation task. Indeed, it is now well established that scientists spend between 60% and 80% of their time preparing data for experiments. Data preparation being such a tedious problem in the annotation domain is mostly due to the different formats of the gold standards as well as the different data representations across reference datasets. We tackle the resulting Evaluation Gap in two ways: First, we introduce a collection of three novel datasets, dubbed N3, to leverage the possibility of optimizing NER and NED algorithms via Linked Data and to ensure a maximal interoperability to overcome the need for corpus-specific parsers. Second, we present GERBIL, an evaluation framework for semantic entity annotation. The rationale behind our framework is to provide developers, end users and researchers with easy-to-use interfaces that allow for the agile, fine-grained and uniform evaluation of annotation tools and frameworks on multiple datasets. The decentral architecture behind the Web has led to pieces of information being distributed across data sources with varying structure. Moreover, the increasing the demand for natural-language interfaces as depicted by current mobile applications requires systems to deeply understand the underlying user information need. In conclusion, the natural language interface for asking questions requires a hybrid approach to data usage, i.e., simultaneously performing a search on full-texts and semantic knowledge bases. To close the Information Gap, this thesis presents HAWK, a novel entity search approach developed for hybrid QA based on combining structured RDF and unstructured full-text data sources.
38

Prerequisites for Extracting Entity Relations from Swedish Texts

Lenas, Erik January 2020 (has links)
Natural language processing (NLP) is a vibrant area of research with many practical applications today like sentiment analyses, text labeling, questioning an- swering, machine translation and automatic text summarizing. At the moment, research is mainly focused on the English language, although many other lan- guages are trying to catch up. This work focuses on an area within NLP called information extraction, and more specifically on relation extraction, that is, to ex- tract relations between entities in a text. What this work aims at is to use machine learning techniques to build a Swedish language processing pipeline with part-of- speech tagging, dependency parsing, named entity recognition and coreference resolution to use as a base for later relation extraction from archival texts. The obvious difficulty lies in the scarcity of Swedish annotated datasets. For exam- ple, no large enough Swedish dataset for coreference resolution exists today. An important part of this work, therefore, is to create a Swedish coreference solver using distantly supervised machine learning, which means creating a Swedish dataset by applying an English coreference solver on an unannotated bilingual corpus, and then using a word-aligner to translate this machine-annotated En- glish dataset to a Swedish dataset, and then training a Swedish model on this dataset. Using Allen NLP:s end-to-end coreference resolution model, both for creating the Swedish dataset and training the Swedish model, this work achieves an F1-score of 0.5. For named entity recognition this work uses the Swedish BERT models released by the Royal Library of Sweden in February 2020 and achieves an overall F1-score of 0.95. To put all of these NLP-models within a single Lan- guage Processing Pipeline, Spacy is used as a unifying framework. / Natural Language Processing (NLP) är ett stort och aktuellt forskningsområde idag med många praktiska tillämpningar som sentimentanalys, textkategoriser- ing, maskinöversättning och automatisk textsummering. Forskningen är för när- varande mest inriktad på det engelska språket, men många andra språkområ- den försöker komma ikapp. Det här arbetet fokuserar på ett område inom NLP som kallas informationsextraktion, och mer specifikt relationsextrahering, det vill säga att extrahera relationer mellan namngivna entiteter i en text. Vad det här ar- betet försöker göra är att använda olika maskininlärningstekniker för att skapa en svensk Language Processing Pipeline bestående av part-of-speech tagging, de- pendency parsing, named entity recognition och coreference resolution. Denna pipeline är sedan tänkt att användas som en bas for senare relationsextrahering från svenskt arkivmaterial. Den uppenbara svårigheten med detta ligger i att det är ont om stora, annoterade svenska dataset. Till exempel så finns det inget till- räckligt stort svenskt dataset för coreference resolution. En stor del av detta arbete går därför ut på att skapa en svensk coreference solver genom att implementera distantly supervised machine learning, med vilket menas att använda en engelsk coreference solver på ett oannoterat engelskt-svenskt corpus, och sen använda en word-aligner för att översätta detta maskinannoterade engelska dataset till ett svenskt, och sen träna en svensk coreference solver på detta dataset. Det här arbetet använder Allen NLP:s end-to-end coreference solver, både för att skapa det svenska datasetet, och för att träna den svenska modellen, och uppnår en F1-score på 0.5. Vad gäller named entity recognition så använder det här arbetet Kungliga Bibliotekets BERT-modeller som bas, och uppnår genom detta en F1- score på 0.95. Spacy används som ett enande ramverk för att samla alla dessa NLP-komponenter inom en enda pipeline.
39

Encyclopaedic question answering

Dornescu, Iustin January 2012 (has links)
Open-domain question answering (QA) is an established NLP task which enables users to search for speciVc pieces of information in large collections of texts. Instead of using keyword-based queries and a standard information retrieval engine, QA systems allow the use of natural language questions and return the exact answer (or a list of plausible answers) with supporting snippets of text. In the past decade, open-domain QA research has been dominated by evaluation fora such as TREC and CLEF, where shallow techniques relying on information redundancy have achieved very good performance. However, this performance is generally limited to simple factoid and deVnition questions because the answer is usually explicitly present in the document collection. Current approaches are much less successful in Vnding implicit answers and are diXcult to adapt to more complex question types which are likely to be posed by users. In order to advance the Veld of QA, this thesis proposes a shift in focus from simple factoid questions to encyclopaedic questions: list questions composed of several constraints. These questions have more than one correct answer which usually cannot be extracted from one small snippet of text. To correctly interpret the question, systems need to combine classic knowledge-based approaches with advanced NLP techniques. To Vnd and extract answers, systems need to aggregate atomic facts from heterogeneous sources as opposed to simply relying on keyword-based similarity. Encyclopaedic questions promote QA systems which use basic reasoning, making them more robust and easier to extend with new types of constraints and new types of questions. A novel semantic architecture is proposed which represents a paradigm shift in open-domain QA system design, using semantic concepts and knowledge representation instead of words and information retrieval. The architecture consists of two phases, analysis – responsible for interpreting questions and Vnding answers, and feedback – responsible for interacting with the user. This architecture provides the basis for EQUAL, a semantic QA system developed as part of the thesis, which uses Wikipedia as a source of world knowledge and iii employs simple forms of open-domain inference to answer encyclopaedic questions. EQUAL combines the output of a syntactic parser with semantic information from Wikipedia to analyse questions. To address natural language ambiguity, the system builds several formal interpretations containing the constraints speciVed by the user and addresses each interpretation in parallel. To Vnd answers, the system then tests these constraints individually for each candidate answer, considering information from diUerent documents and/or sources. The correctness of an answer is not proved using a logical formalism, instead a conVdence-based measure is employed. This measure reWects the validation of constraints from raw natural language, automatically extracted entities, relations and available structured and semi-structured knowledge from Wikipedia and the Semantic Web. When searching for and validating answers, EQUAL uses the Wikipedia link graph to Vnd relevant information. This method achieves good precision and allows only pages of a certain type to be considered, but is aUected by the incompleteness of the existing markup targeted towards human readers. In order to address this, a semantic analysis module which disambiguates entities is developed to enrich Wikipedia articles with additional links to other pages. The module increases recall, enabling the system to rely more on the link structure of Wikipedia than on word-based similarity between pages. It also allows authoritative information from diUerent sources to be linked to the encyclopaedia, further enhancing the coverage of the system. The viability of the proposed approach was evaluated in an independent setting by participating in two competitions at CLEF 2008 and 2009. In both competitions, EQUAL outperformed standard textual QA systems as well as semi-automatic approaches. Having established a feasible way forward for the design of open-domain QA systems, future work will attempt to further improve performance to take advantage of recent advances in information extraction and knowledge representation, as well as by experimenting with formal reasoning and inferencing capabilities.
40

Modèles graphiques discriminants pour l'étiquetage de séquences : application à la reconnaissance d'entités nommées radiophiniques / Discriminative graphical models for sequence labelling : application to named entity recognition in audio broadcast news

Zidouni, Azeddine 08 December 2010 (has links)
Le traitement automatique des données complexes et variées est un processus fondamental dans les applications d'extraction d'information. L'explosion combinatoire dans la composition des textes journalistiques et l'évolution du vocabulaire rend la tâche d'extraction d'indicateurs sémantiques, tel que les entités nommées, plus complexe par les approches symboliques. Les modèles stochastiques structurels tel que les champs conditionnels aléatoires (CRF) permettent d'optimiser des systèmes d'extraction d'information avec une importante capacité de généralisation. La première contribution de cette thèse est consacrée à la définition du contexte optimal pour l'extraction des régularités entre les mots et les annotations dans la tâche de reconnaissance d'entités nommées. Nous allons intégrer diverses informations dans le but d'enrichir les observations et améliorer la qualité de prédiction du système. Dans la deuxième partie nous allons proposer une nouvelle approche d'adaptation d'annotations entre deux protocoles différents. Le principe de cette dernière est basé sur l'enrichissement d'observations par des données générées par d'autres systèmes. Ces travaux seront expérimentés et validés sur les données de la campagne ESTER. D'autre part, nous allons proposer une approche de couplage entre le niveau signal représenté par un indice de la qualité de voisement et le niveau sémantique. L'objectif de cette étude est de trouver le lien entre le degré d'articulation du locuteur et l'importance de son discours / Recent researches in Information Extraction are designed to extract fixed types of information from data. Sequence annotation systems are developed to associate structured annotations to input data presented in sequential form. The named entity recognition (NER) task consists of identifying and classifying every word in a document into some predefined categories such as person name, locations, organizations, and dates. The complexity of the NER is largely related to the definition of the task and to the complexity of the relationships between words and the semantic associated. Our first contribution is devoted to solving the NER problem using discriminative graphical models. The proposed approach investigates the use of various contexts of the words to improve recognition. NER systems are fixed in accordance with a specific annotation protocol. Thus, new applications are developed for new protocols. The challenge is how we can adapt an annotation system which is performed for a specific application to other target application? We will propose in this work an adaptation approach of sequence labelling task based on annotation enrichment using conditional random fields (CRF). Experimental results show that the proposed approach outperform rules-based approach in NER task. Finally, we propose a multimodal approach of NER by integrating low level features as contextual information in radio broadcast news data. The objective of this study is to measure the correlation between the speaker voicing quality and the importance of his speech

Page generated in 0.0489 seconds