• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 60
  • 22
  • 15
  • 9
  • 8
  • 8
  • 7
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 317
  • 69
  • 66
  • 65
  • 39
  • 37
  • 36
  • 32
  • 29
  • 27
  • 26
  • 25
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

EVALUATION OF MECHANICAL PROERTIES AND EFFECTIVE THICKNESS OF THE INTERFACES BY FINITE ELEMENT ANALYSIS

Pulla, Sesha Spandana 01 January 2011 (has links)
The nanoindentation technique has been used to identify the interfaces between dissimilar materials and subsequently to evaluate the physical and mechanical properties across the interfaces. The interfaces could represent the interface (transition face) between oxidized and unoxidized polymers, the interface between rigid fiber and polymer matrix, or other similar situations. It is proposed to use a nanoindenter equipped with small spherical tip to indent across the interfaces of dissimilar materials. The proposed method has been validated by conducting a large number of virtual experiments through 3-dimensional finite element simulations, by varying the properties of the two dissimilar materials, including various combinations of modulus (E1/E2), yield strength (σy1/σy2), hardening index (n1/n2), interface sizes (R/T), Poisson’s ratio (ν), etc. The mechanical properties across the interfaces have been obtained, and a quantitative model for predicting the interface sizes has been established.
142

Effet de la poudre de verre sur le fluage du C-S-H / Glass powder effect on the creep of C-S-H phase

Danilova, Maryna January 2012 (has links)
Le verre est un matériau unique inerte pouvant être recyclé infiniment sans pour autant changer des caractéristiques physico-chimiques. Toutefois, pour une raison ou une autre, de grandes quantités de verre ne sont pas recyclées et sont, par conséquent, entreposées dans les déchetteries. Son recyclage alternatif est devenu depuis longtemps un problème environnemental majeur. En outre, le verre étant un matériau potentiellement utile pour le développement des bétons écologiques, sa valorisation en ce sens semble prometteuse. Dans cette recherche, la caractérisation du fluage du béton incorporant le résidu de verre sous forme de poudre (poudre de verre, PV) en tant qu'ajout cimentaire (bétons à PV) a été effectuée par des essais aux échelles macro- et nanométrique. En premier lieu, la thèse présente les résultats de la campagne expérimentale visant à déterminer le comportement mécanique sous charge du béton à PV (seule ou en synergie avec des ajouts cimentaires classiques). Différents types de déformation ont été éxaminés, d'abord sous charge puis après déchargement : déformation quasi-instantanée, déformation mécanique totale due au maintient [i.e. maintien] durant 1 année d'une charge en compression uniaxiale, fluage total, fluage de base, recouvrance quasi-instantanée, recouvrance totale. Le retrait dans les conditions de séchage et celui endogène ont été également étudiés. Après 1 an de fluage en compression, les effets de la charge constante et du séchage sur la résistance résiduelle ont aussi été examinés. Une comparaison a été faite concernant l'état final de la porosité. Ensuite, la thèse dévoile les résultats des essais menés sur les pâtes en descendant vers leur composition et les propriétés des phases formées, notamment des silicates de calcium hydratés (des C-S-H). Tout cela, afin de conclure sur le caractère inoffensif de l'utilisation de la PV vis-à-vis du fluage.
143

Stored energy maps in deformed metals using spherical nanoindentation

Vachhani, Shraddha J. 22 May 2014 (has links)
Microstructure changes that occur during the deformation and heat treatments involved in wrought processing of metals are of central importance in achieving the desired properties or performance characteristics in the finished products. However, thorough understanding of the evolution of microstructure during thermo-mechanical processing of metallic materials is largely hampered by lack of methods for characterizing reliably their local (anisotropic) properties at the sub-micron length scales. Recently, remarkable advances in nanoindentation data analysis techniques have been made which now make it possible to obtain quantitative information about the local mechanical properties of constituent individual grains in polycrystalline metallic samples. In this work, a novel approach that combines mechanical property information obtained from spherical nanoindentation with the complementary structure information measured locally at the indentation site, using Electron Backscattered Diffraction (EBSD), is used to systematically investigate the local structure-property relationships in fcc metals. This work is focused on obtaining insights into the changes in local stored energies of polycrystalline metallic samples as a function of their crystal orientation at increasing deformation levels. Furthermore, using the same approach, the evolution of mechanical properties in the grain boundary regions in these samples is studied in order to better understand the role of such interfaces during deformation and recrystallization processes. The findings provide valuable information regarding development of stored energy gradients in polycrystalline materials during macroscopic deformation.
144

Mechanical Evaluation of Electronic Properties of Materials

Nudo, Nicholas 02 October 2013 (has links)
The present research focuses on the coupling of mechanical and electrical properties of materials and culminates in a direct connection between applied strain to thin-films, thin-film electron binding energy, the energy loss via plastic deformation provided by an indentation, and the substrate resistance. The methods used in this research include X-ray photoelectron spectroscopy (XPS), nanoindentation, digital optical microscopy, and sputter coat deposition. It is discovered that there is a shift in electron binding energy on the scale of 0.2 eV to 1.4 eV in gold and palladium thin-films sputtered on polyvinylidene fluoride (PVDF) through the application of strain induced by a convex shape. There is a change in the area beneath the load-displacement curve measured via indentation from 5.55 x 10^-10 J to 4.78 x 10^-10 J when the gold-palladium thin-film sputtered on PVDF is changed from the flat arrangement to the convex arrangement. Furthermore, the strain also changed the electrical resistance of aluminum foil, which indicates that the substrate electrical resistance is affected by the induced strain. The internal resistance of a circuit developed for this research changed from 7.76 ohms for flat samples to 8.03 ohms and 8.33 ohms for flat and convex samples, respectively. It is expected that the research can be used to estimate the strain in nanogears and other devices at small length scales.
145

Small-scale polymer structures enabled by thiol-ene copolymer systems

Kasprzak, Scott Edward 02 April 2009 (has links)
The research described herein is aimed at exploring the thermo-mechanical properties of thiol-ene polymers in bulk form, investigating the ability of thiol-ene polymers to behave desirably as photolithographic media, and providing the first characterization of the mechanical properties of two-photon stereolithography-produced polymer structures. The thiol-ene polymerization reaction itself is well-characterized and described in the literature, but the thermomechanical properties of thiol-ene and thiol-ene/acrylate polymers still require more rigorous study. Understanding the behavior of thiol-ene networks is a crucial step towards their expanded use in bulk form, and particularly in specialized applications such as shape memory devices. Additionally, the thiol-ene polymerization reaction mechanism exhibits unique properties which make these polymers well suited to photolithography, overcoming the typical dichotomy of current materials which either exhibit excellent photolithographic behavior or have controllable properties. Finally, before two-photon stereolithography can create mechanisms and devices which can serve any mechanically functional role, the mechanical properties of the polymers they produce must be quantitatively characterized, which is complicated by the extremely small scale at which these structures are produced. As such, mechanical characterization to date has been strictly qualitative. Fourier transfer infrared spectroscopy revealed functional group conversion information and sol-fraction testing revealed the presence of unconverted monomer and impurities, while dynamic mechanical analysis and tensile testing revealed the thermomechanical responses of the systems. Nanoindentation was employed to characterize the mechanical properties of polymers produced by two-photon stereolithography. Optical and electron microscopy were exploited to provide quantitative and qualitative evaluations of thiol-ene/acrylate performance in small-scale polymerization regimes. The broad objective of the research was to explore thiol-ene polymer behavior both in bulk and at the small scale in an effort to supplement the material library currently used in these fields and to expand the design envelope available to researchers. The significance of the research is the advancement of a more complete and fundamental understanding of thiol-ene polymerization from kinetics to final properties, the quantitative establishment of the mechanical properties of materials created with two-photon stereolithography, and the comprehensive characterization of a supplementary class of photopatternable polymers with greater property tunability than is possible with currently used materials.
146

Contact deformation of carbon coatings: mechanisms and coating design.

Singh, Rajnish Kumar, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
This thesis presents the results of a study focussed on the elucidation of the mechanisms responsible for determining the structural integrity of carbon coatings on ductile substrates. Through elucidation of these mechanisms, two different coating systems are designed; a multilayered coating and a functionally graded coating. While concentrating upon carbon coatings, the findings of this study are applicable to a broad range of hard coatings on ductile substrates. The thesis concludes with a chapter outlining a brief study of the effects of gold coatings on silicon under contact load at moderate temperatures to complement the major part of the thesis. Carbon coatings with differing mechanical properties were deposited using plasma enhanced chemical vapour deposition (PECVD), filtered assisted deposition (FAD) and magnetron sputtering deposition methods. Combinations of these techniques plus variation of deposition parameters enabled composite multilayered and functionally-graded coatings to also be deposited. Substrates were ductile metals; stainless steel and aluminium. Characterisation of the coating mechanical properties was undertaken using nanoindentation and nano-scratch tests. The same techniques were used to induce fracture within the coatings to allow subsequent analysis of the fracture mechanism. These were ascertained with the assistance of cross-sectional imaging of indents prepared using a focussed ion beam (FIB) mill and transmission electron microscopy (TEM) using specimen preparation techniques also utilising the focussed ion beam mill. A two dimensional axisymmetric finite element model (FEM) was built of the coating systems using the commercial software package, ANSYS. Substrate elastic-plastic properties were ascertained by calibrating load-displacement curves on substrate materials with the finite element model results. Utilising the simulation of spherical indentation, the distribution of stresses and the locations for fracture initiation were ascertained using finite element models. This enabled determination of the influence such factors as substrate mechanical properties, residual stresses in the coatings and importantly the variation of elastic properties of the different coating materials. Based upon the studies of monolithic coatings, simulations were undertaken on multilayer and functionally-graded coatings to optimise design of these coating types. Based on the results of the modelling, multilayered and functionally graded coatings were then deposited and mechanical testing undertaken to confirm the models. Three major crack types were observed to occur as the result of the spherical nanoindentation on the coatings; ring, radial and lateral cracks. Ring cracks were found to initiate from the top surface of the film, usually at some distance from the edge of the spherical contact. Radial cracks usually initiated from the interface between the coating and the substrate directly under the symmetry axis of indentation and propagated outwards in a non symmetrical star-like fashion. Lateral cracks formed either between layers in the multilayer coatings or at the interface with substrate. Ring and radial cracks were found to form upon loading whereas lateral cracks formed upon both loading and unloading depending upon the crack driving mechanism. Pop-in events in the load displacement indentation curve were found to be indicative of the formation of ring cracks, while the formation of the other types of cracks was not signified by pop-ins but rather by variations in the slope of the curve. The substrate yield strength was found to influence the initiation of all crack systems while compressive stresses in the coating were seen to only influence the formation of ring and radial cracks. However, it was also noted that the initiation of one form of crack tended to then hinder the subsequent formation of others. In multilayer coatings, the lateral cracks were suppressed, as opposed to the monolayer coating system, but a ring crack was observed. This drawback in the multilayer system was successfully addressed by the design of a graded coating having the highest Young??s modulus at the middle of the film thickness. In this coating, due to the graded nature of the elastic modulus, the stresses at the deleterious locations (top surface and interface) were guided toward the middle of coating and hence increased the load bearing capabilities. The effect of substrate roughness upon the subsequent surface roughness of the coating and also upon the fracture process of the coating during indentation was also investigated. For the coatings deposited on rough substrates, the radial cracks were observed to form initially and this eventfully delayed the initiation of ring cracks. Also the number of radial cracks observed at the interface was found to be proportional to the distribution of the interfacial asperities. In summary, the study elucidated the fracture mechanisms of monolayer, multilayer and graded carbon coatings on ductile substrates under uniaxial and sliding contact loading. The effects of the yield strength, surface roughness of the substrate, along with the residual stress and elastic modulus of the coatings on the fracture of coatings were investigated. The study utilised finite element modelling to explain the experiments observations and to design coating systems.
147

Deformation behaviour of diamond-like carbon coatings on silicon substrates

Haq, Ayesha Jabeen, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
The deformation mechanisms operating in diamond-like carbon (DLC) coatings on (100) and (111) Si, has been investigated. The effect of coating thickness, indenter geometry, substrate orientation and deposition technique on the deformation of DLC coatings and the underlying substrate was studied by undertaking nanoindentation followed by subsurface microstructural characterization. Uncoated (111) Si was also investigated for comparison. The observed microstructural features were correlated to the indentation response of the coatings and compared with simulation studies, as well as observations on uncoated Si. In uncoated (111) Si, phase transformation was found to be responsible for the discontinuities in the load-displacement curves, similar to (100) Si. However, slip was activated on {311} planes instead of on {111} planes. Moreover, the density of defects was also significantly lower and their distribution asymmetric. The coatings were adherent, uniformly thick and completely amorphous. The load-displacement curves displayed several pop-ins and a pop-out, the indentation loads for the first pop-in and the pop-out depending primarily on the thickness of the coating. The coatings exhibited localized compressive deformation in the direction of loading without any through-thickness cracks. The extent of this localized deformation increased with indentation load. Hardness and thickness of the coatings and the geometry of the indenter influenced the magnitude of compressive strains. Harder and thinner coatings and a blunt indenter exhibited the minimum degree of deformation. Densification by rearrangement of molecules has been suggested as the mechanism responsible for plastic compression. At indentation loads corresponding to the first pop-in, (100) and (111) silicon substrates initially deformed by <111> and <311> slip respectively. Higher indentation loads caused phase transformation. Therefore, unlike in uncoated Si, dislocation nucleation in the Si substrate has been proposed as the mode responsible for the first pop-in. Subsequent pop-ins were attributed to further deformation by slip and twinning, phase transformation and extensive cracking (median and secondary cracks) of the substrate. The pop-out, however, was ascribed to phase transformation. Extensive deformation in the substrate, parallel to the interface, is attributed to the wider distribution of the stress brought about by the DLC coating. Good correlation was obtained between the nanoindentation response, microstructural features and simulation studies.
148

Influence of Thermal Aging on the Microstructure and Mechanical Behavior of Dual Phase Precipitation Hardened Powder Metallurgy Stainless Steels

January 2011 (has links)
abstract: Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative analyses of the inherent porosity and phase fractions were conducted on the steels and no significant differences were noted with respect to aging temperature. Tensile strength, yield strength, and elongation to fracture all increased with increasing aging temperature reaching maxima at 538oC in most cases. Increased strength and decreased ductility were observed in steels of higher martensite content. Nanoindentation of the individual microconstituents was employed to obtain a fundamental understanding of the strengthening contributions. Both the ferrite and martensite hardness values increased with aging temperature and exhibited similar maxima to the bulk tensile properties. Due to the complex non-uniform stresses and strains associated with conventional nanoindentation, micropillar compression has become an attractive method to probe local mechanical behavior while limiting strain gradients and contributions from surrounding features. In this study, micropillars of ferrite and martensite were fabricated by focused ion beam (FIB) milling of dual phase precipitation hardened powder metallurgy (PM) stainless steels. Compression testing was conducted using a nanoindenter equipped with a flat punch indenter. The stress-strain curves of the individual microconstituents were calculated from the load-displacement curves less the extraneous displacements of the system. Using a rule of mixtures approach in conjunction with porosity corrections, the mechanical properties of ferrite and martensite were combined for comparison to tensile tests of the bulk material, and reasonable agreement was found for the ultimate tensile strength. Micropillar compression experiments of both as sintered and thermally aged material allowed for investigation of the effect of thermal aging. / Dissertation/Thesis / M.S. Materials Science and Engineering 2011
149

Microstructural and Mechanical Property Characterization of Laser Additive Manufactured (LAM) Rhenium

January 2012 (has links)
abstract: This report will review the mechanical and microstructural properties of the refractory element rhenium (Re) deposited using Laser Additive Manufacturing (LAM). With useable structural strength over 2200 °C, existing applications up to 2760 °C, very high strength, ductility and chemical resistance, interest in Re is understandable. This study includes data about tensile properties including tensile data up to 1925 °C, fracture modes, fatigue and microstructure including deformation systems and potential applications of that information. The bulk mechanical test data will be correlated with nanoindentation and crystallographic examination. LAM properties are compared to the existing properties found in the literature for other manufacturing processes. The literature indicates that Re has three significant slip systems but also twins as part of its deformation mechanisms. While it follows the hcp metal characteristics for deformation, it has interesting and valuable extremes such as high work hardening, potentially high strength, excellent wear resistance and superior elevated temperature strength. These characteristics are discussed in detail. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2012
150

Irradiation effects on the deformation of oxide dispersion strengthened steels

Grieveson, Eleanor M. January 2015 (has links)
This study concerns four high performance structural alloys designed to withstand the extreme temperature and irradiation environment inside fusion and fission fast breeder reactors: two Reduced Activation Ferritic Martensitic (RAFM) steels (Fe-14wt&percnt;Cr and a European standard alloy EUROFER97) and two equivalent Oxide Dispersion Strengthened (ODS) steels (Fe-14wt&percnt;Cr ODS (CEA ODS) and EUROFER ODS). Neutron irradiation of the samples was impractical due to timescale and specific handling requirements for radioactive samples. Instead, ion implantation was used to simulate the helium and damage of neutron irradiation. Samples of each alloy were subjected to a range of ion implantations: 75appm He, 2000appm He, 2000appm He + 4.5dpa Fe and 2000appm Ne. The matrix of four materials and five implantation conditions was analysed using the following experimental techniques: nanohardness indentation, Vickers hardness testing, micropillar compression, microcantilever bending, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). These techniques were used to compare the properties of the unimplanted materials and their response to implantation. Yield stress (&sigma;<sub>y</sub>) was comparable across hardness testing and microcantilever bending, and consistently showed &sigma;<sub>y</sub> Fe-14wt&percnt;Cr &LT; EUROFER &LT; EUROFER ODS &LT; CEA ODS. When subject to helium implantation, 75appm He caused insignificant changes in &sigma;y while 2000appm He increased &sigma;<sub>y</sub> in all materials. This increase was most significant in Fe-14wt&percnt;Cr due to its low grain boundary density and lack of oxide/carbide particles. The particle dispersions in the other materials act as helium traps, preventing the formation of TEM visible bubbles and reducing the hardening effects of the helium. Across all results it becomes clear that, although not to the degree of the ODS materials, EUROFER is more radiation resistant than Fe-14wt&percnt;Cr. It therefore appears that it is the presence of a complex microstructure including small grains and a distribution of oxide or carbide particles, rather than the specific inclusion of oxide nanoparticles, that provides RAFM steels with superior irradiation resistance properties.

Page generated in 0.0943 seconds