• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 60
  • 22
  • 15
  • 9
  • 8
  • 8
  • 7
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 317
  • 69
  • 66
  • 65
  • 39
  • 37
  • 36
  • 32
  • 29
  • 27
  • 26
  • 25
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Experimental and numerical analysis of deformation and fracture of cortical bone tissue

Abdel-Wahab, Adel A. January 2011 (has links)
Bones are the principal structural components of a skeleton; they provide the body with unique roles, such as its shape maintenance, protection of internal organs and transmission of muscle forces among body segments. Their structural integrity is vital for the quality of life. Unfortunately, bones can only sustain loads until a certain limit, beyond which it fails. Usually, the reasons for bone fracture are traumatic falls, sports injuries, and engagement in transport or industrial accidents. The stresses imposed on a bone in such activities can be far higher than those produced during normal daily activities and lead to fracture. Understanding deformation and fracture behaviours of bone is necessary for prevention and diagnosis of traumas. Even though, in principle, studying bone's deformation and fracture behaviour is of immense benefit, it is not possible to engage volunteers in in-vivo investigations. Therefore, by developing adequate numerical models to predict and describe its deformation and fracture behaviours, a detailed study of reasons for, and ways to prevent or treat bone fracture could be implemented. Those models cannot be formulated without a set of experimental material data. To date, a full set of bone's material data is not implemented in the material data-base of commercial finiteelement (FE) software. Additionally, no complete set of data for the same bone can be found in the literature. Hence, a set of cortical bone's material data was experimentally measured, and then introduced into the finite-element software. A programme of experiments was conducted to characterise mechanical properties of the cortical bone tissue and to gain a basic understanding of the spatial variability of those properties and their link to the underlying microstructure. So, several types of experiments were performed in order to quantify mechanical properties of the studied bone tissue at macro- and microscales under quasi-static and dynamic loading regimes for different cortex positions called anterior, posterior, medial and lateral. Those experiments included: (1) uniaxial tension and creep tests to obtain its elastic, plastic and viscoelastic properties; (2) nanoindentation tests to characterise its microstructural elastic-plastic properties; (3) Izod tests to investigate its fracture properties under impact bending loading; (4) tensile-impact tests to characterise its impact strength and fracture force when exposed to a longitudinal loading regime. All the experiments were performed for different cortex positions and different directions (along the bone axis and perpendicular to it) when possible. Based on the results of those experiments, a number of finite-element models were developed in order to analyse its deformation and fracture using the extended finiteelement method (X-FEM) at different length scales and under various loading conditions. Those models included: (1) two-dimensional (2D) FE models to simulate its fracture and deformation at microscale level under quasi-static tensile loading. Additionally, the effect of the underlying microstructure on crack propagation paths was investigated; (2) 2D and three-dimensional (3D) FE models to simulate its fracture and deformation at macroscale level for the Izod impact test setup. In addition, the applicability of different constitutive material models was examined; (3) 3D FE models to simulate its fracture and deformation at macroscale level for tensile-impact loading conditions. The developed models provided high-quality results, and most importantly, they adequately reflected the experimental data. The main outcome of this thesis is a comprehensive experimental analysis and numerical simulations of the deformation and fracture of the cortical bone tissue at different length scales in response to quasi-static and dynamic loading. Recommendations on further research developments are also suggested.
152

Aceleração da nitretação iônica pela nanoestruturação de superfícies metálicas induzidas por bombardeio com gases nobres / Entanglement and matrix product states in quantum phase transitions

Ochoa Becerra, Erika Abigail 26 October 2007 (has links)
Orientador: Fernando Alvarez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-11T13:13:51Z (GMT). No. of bitstreams: 1 OchoaBecerra_ErikaAbigail_D.pdf: 5724102 bytes, checksum: c62c9d58c0f942077a9cfd1ba1d75d94 (MD5) Previous issue date: 2007 / Resumo: A presente tese trata o estudo as propriedades físicas resultantes em sistemas metálicos com superfícies nanoestrutura as pelo bombardeio com gás nobre e posteriormente nitretados com técnicas basea as em plasma. A busca e novas condições e tratamento que aumentem a velocidade a ifusão o nitrogênio é e grande interesse para a modificação e superfícies metálicas. Para isto, o pré-tratamento a superfície o material, através e métodos e refinamento os grãos a superfície, é fundamental na melhora a incorporação e nitrogênio no material. Este trabalho visa o estudo e sistemas basea os em ferro, especialmente aços e interesse tecnológico, com superfícies refinadas até a escala nanométrica e submeti os ao processo e nitretação. Neste caso, a superfície a amostra considera a po e ser nanoestrutura a por bombar eiodiônico com gases nobres ("atomic attrition") e posteriormente nitreta a usan o feixe e íons. O material escolhi o para o presente trabalho é o aço enomina o AISI 4140, um aço e baixa liga. O tratamento superficial ("atomic attrition") prévio ao processo e nitretação possibilita o aumento o conteúdo e nitrogênio em profundidade permitindo ainda que a nitretação possa ser realizada a temperaturas relativamente mais baixas (T ~ 300 °C). A caracterização as amostras pré-trata as e/ou nitretadas é realizada in-situ por espectroscopia e elétrons fotoemitidos garantindo condições únicas para o estudo o fenômeno e nanoestruturação e sua influência na ifusão o nitrogênio. Outras técnicas usuais e caracterização utiliza as foram a nano-in entação, raios-X (em nosso grupo e no LNLS) e microscopia óptica e eletrônica. Os resultados indicam o sucesso na nanoestruturação a superfície as amostras pela formação e caminhos e rápida difusão e nitrogênio e assim aumentando a dureza resultante o material / Abstract: The present thesis treats the stu y of the physical resultant properties in metallic systems with nano-structure surfaces by the bombar ment with noble gas an subsequently nitri e with techniques base on plasma. The search for new con itions of treatment that increase the spee of diffusion of the nitrogen is of great interest for the modification of metal surfaces. For this, the pre-treatment of the material surface, through methods of refinement of the grains at the surface, is fundamental in the improvement of the incorporation of nitrogen in the material. This work aims at the study of systems base on iron, especially steels of technological interest, with surfaces refine up to the nanometric scale an subjecte to the nitriding process. In this case, the surface of the considere sample can be nano - structure by ionic bombar ment with noble gases ("atomic attrition") an subsequently nitride using bundle of ions. The material chosen for the present work is the steel AISI 4140, a steel of low alloy. The superficial treatment ("atomic attrition") prior to the process of nitriding makes possible the increase of the content of nitrogen in epth allowing still that nitriding could be carrie out to relatively lower temperatures (T ~ 300 °C). The characterization of the samples pre-treate an / or nitride is carrie out in-situ by spectroscopy of photo-emitte electrons guaranteeing singular conditions for the study of the phenomenon of nano-structuring an its influence in the nitrogen iffusion. Other usual techniques of characterization use were nano - in dentation, X-rays (in our group an at LNLS), optical an electronic microscopy. The results indicate the success in the nano - structuring of the sample surface for the formation of ways of quick diffusion of nitrogen an so increasing the resultant har ness of the material / Doutorado / Física da Matéria Condensada / Doutor em Ciências
153

Influência das unidades fotoativadoras e do material restaurador indireto sobre a dureza de um cimento resinoso dual auto-adesivo e um cimento resinoso dual convencional por meio de teste de nanoendentação / Influence of curing units and restorative indirect material on hardness of a dual cure self-adhesive resin cement and dual cure conventional resin cement through nanoindentadion test

Rosiane Nogueira Kuguimiya 05 December 2013 (has links)
O objetivo deste estudo foi avaliar a dureza de um cimento resinoso dual autoadesivo (RelyX U200) e um cimento resinoso dual convencional (RelyX ARC) fotoativados sob materiais restauradores indiretos, utilizando unidades fotoativadoras com diferentes comprimentos de ondas (LED Elipar Freelight 2, LED Bluephase, Laser AccuCure 3000TM), por meio de teste de nanoendentação. Para a obtenção dos espécimes foram utilizados incisivos bovinos que após profilaxia, foram submetidos a cortes no limite amelo-cementário para a separação da porção coronária. Após inclusão, os espécimes foram submetidos ao desgaste para exposição de dentina e padronização do substrato. Para simular clinicamente restaurações indiretas foram confeccionadas peças em cerâmica IPS e.max® Press (Ivoclar Vivadent) e em resina composta indireta SR Adoro (Ivoclar Vivadent) que foram cimentadas nas superfícies dentinárias. Os espécimes foram seccionados longitudinalmente em baixa velocidade e constante irrigação e polidos em politriz. Foi estabelecido um grupo controle positivo, no qual o cimento foi fotoativado sem a interposição de material restaurador indireto e um grupo controle negativo, no qual, após a cimentação do material restaurador indireto, a fotoativação foi suprimida, ocorrendo apenas a polimerização química do cimento. Todos os espécimes foram armazenados em água destilada a 37°C durante 7 dias e após esse período, foram submetidos ao teste de nanoendentação na linha de cimentação, com o auxílo do ultra-microdurômetro (Shimadzu Dynamic Ultra Micro Hardness Tester). O ciclo aplicado foi de 100mN. Foram realizadas cinco nanoendentações em cada espécime, cujas médias resultaram nos valores de cada superfície. Os resultados obtidos foram submetidos à Análise de Variância e Teste de Tukey (p<0,05). Podese concluir que o cimento RelyX ARC apresentou maiores valores de dureza do que o RelyX U200 e este foi mais dependente da fotoativação para alcançar uma polimerização adequada. A dureza dos cimentos resinosos avaliados foi influenciada negativamente pela interposição do material restaurador indireto e apenas os LEDs foram capazes de manter o mesmo grau de polimerização dos cimentos quando interposto um material restaurador indireto. / This study aimed to evaluate the hardness of a dual cure self-adhesive resin cement (RelyX U200) and a dual cure conventional resin cement (RelyX ARC) light curing units with different wavelengths (Elipar Freelight 2 LED, Bluephase LED, AccuCure 3000TM Laser) through nanoindentadion test. To obtain the specimens bovine incisors were used after prophylaxis. The tooth were sectioned at the limit amelocement for the separation of the coronal portion. After inclusion, the dentin surface of the specimens were exposed to standardize the substrate. To clinically simulate indirect restorations ceramic pieces were made (IPS e.max® Press/Ivoclar Vivadent) and indirect composite resin (SR Adoro/Ivoclar Vivadent) were cemented on dentin surfaces. The specimens were sectioned longitudinally at low speed with constant irrigation and polished. A positive control group was stablished, in which the cement was light cured without the interposition of indirect restorative material, and a negative control group, in which, after cementation of the indirect restorative material, the light curing was removed, occurring only the chemical polymerization of the cement. All specimens were stored in distilled water at 37°C for 7 days. Nanoindentadion hardness of the cement layer was measured under 100mN load (Shimadzu Dynamic Ultra Micro Hardness Tester). Five nanoindentations in each specimen were obtained, which resulted in the average values of each surface. Data were statistically analyzed using ANOVA and Tukey test (p<0,05). RelyX ARC pesented higher values of hardness than RelyX U200 and this was more dependent on the polymerization. The hardness of the evaluated resin cements was negatively influenced by the interposition of an indirect restorative material and only the LEDs were able to maintain the same degree of polymerization of the cement when an indirect restorative material was used.
154

Nanomechanical and Nanotribological Characterization of Sub-Micron Polymeric Spheres

Verma, Himanshu Kumar 16 September 2015 (has links)
Friction between nanoscale objects has been a subject of great interest and intense research effort for the last two decades. However, the vast majority of the work done in this area has focused upon the sliding friction between two rigid, atomically smooth surfaces. Thus the parameter most explored has been the corrugation in the atomic potentials and how this affects the force required to slide one object across another. In truth, many nanoscale objects whose translation force is of practical interest are more spherical in nature. We hypothesize that the factors that determine the translation force will be related, not only to the interfacial adhesion, but also to the mechanical properties of the translating object and its underlying surface. The dependence on these quantities of the friction is not known. In this dissertation we have utilized Atomic Force Microscopy and Force Spectroscopy to study the tribological properties of submicron scale polymeric particles to explore how the friction between these submicron spherical objects translating over planar substrates is related to interfacial energy and the mechanical properties for these particles. A technique for modifying the mechanical properties was developed and used to provide a set of samples over which we had control of the elastic modulus without corresponding changes in the chemical bonds. The modified mechanical properties were tested against the Flory-Rehner theory. Lateral force microscopy was used to measure the force required to translate asymmetric, nanoscale particles of controlled size, surface chemistry and moduli. Silicon wafers were used as the substrate. The effects of work of adhesion, elastic modulus of polystyrene microspheres, and contact radius between particle and substrate have been studied for the different modes of particle translation under an external force.
155

Mechanical properties characterisation of silicon carbide layers in simulated coated particles

Tan, Jun January 2010 (has links)
In the TRISO (tristructural isotropic) coated fuel particle used in the High Temperature Reactor, the most important layer is a silicon carbide layer which acts as a pressure vessel. In this study, we have focused our study on the investigation of the Young’s modulus, hardness, residual stress, and fracture toughness of the SiC layer. Moreover, microstructures and impurities in silicon carbide were characterised and then related to both Young’s modulus and hardness of the SiC layer. Both nanoindentation and micro-indentation were used to determine Young’s modulus and hardness of the SiC. Raman spectroscopy, X-ray diffraction, and scanning electron microscopy techniques were used to examine impurities, phases and microstructure of silicon carbide layers, respectively. Young’s modulus was measured at different positions of a polished surface of the SiC with different CVD growth and crystal orientations. With help from the finite element modelling, it has been found that Young’s modulus of the SiC is dependent on the grain orientation of the SiC. Mechanical properties of silicon carbide are affected by the presence of excess silicon, excess carbon, stacking faults, texture, grain size, property of grain boundary. The effect of these factors on Young’s modulus and hardness, are investigated with the orthogonal analysis. The analysis concludes that the most important factor on Young’s modulus is texture while the most significant factor on hardness is grain boundary. Grain size is secondarily important factor to affect hardness. Stacking faults and impurities almost have no influence on Young’s modulus and hardness. The residual stress in the silicon carbide layer was measured based on the peak shift in Raman spectra of the SiC and is in a range of 150-300 MPa. Fracture resistance in the radial direction of the SiC layer is larger than those in the circumferential direction. The difference is controlled by the layer-like structure of the SiC coating.
156

Plasma And Cold Sprayed Aluminum Carbon Nanotube Composites: Quantification Of Nanotube Distribution And Multi-Scale Mechanical Properties

Bakshi, Srinivasa R 29 May 2009 (has links)
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
157

Novel Ternary Magnesium-Tin Alloys by Microalloying

Behdad, Sadegh 30 October 2015 (has links)
The objective of this research was to explore the possibility of developing novel Magnesium-Tin alloys with improved mechanical properties by micro-alloying. Magnesium is the lightest of all structural metals. It can be machined faster and with almost half the power required for aluminum. There is a limitless supply of magnesium in sea water and it can also be recycled at 5% of initial energy requirements. These properties make magnesium an ideal green alternative to replace metals and polymers in automotive, aerospace, biomedical and defense sectors. The potential weight reduction in the US automotive market alone, leads to 100 billion gallons of gas saved and 6.5 billion gallons of CO2 emissions reduced per year. In defense and aerospace markets, China is the leading foreign supplier of rare earth metals necessary for fabrication of current high-performance Mg alloys, making core defense technologies vulnerable to the interruption of Chinese imports. In the past, China has used its control over mining, application and import of rare earth metals as a strategic leverage. These new Magnesium-Tin ternary alloys offer an alternative that can be made from domestic resources improving national security and minimizing foreign dependence on rare earth metals import. Our results establish that microalloying can tackle issues arising from sluggish precipitate formation kinetics and precipitate size distribution in binary Magnesium-Tin alloys. These new alloys also offer an order of magnitude reduction in heat treatment time (from approximately 1000 hours to less than 100 hours), which makes the benefits of their application two-fold by decreasing manufacturing energy costs and production time. This can also open the route for development of new age-hardenable wrought Magnesium alloys.
158

Vacuum Brazing of Alumina Ceramic to Titanium Using Pure Gold as Filler Metal for Biomedical Implants

Siddiqui, Mohammad S 08 September 2011 (has links)
One of the many promising applications of metal/ceramic joining is in biomedical implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% alumina ceramic using pure gold as the filler metal. A novel method of brazing is developed where resistance heating of C.P titanium is done inside a thermal evaporator using a Ta heating electrode. The design of electrode is optimized using Ansys resistive heating simulations. The materials chosen in this study are biocompatible and have prior history in implantable devices approved by FDA. This research is part of Boston Retinal implant project to make a biocompatible implantable device (www.bostonretina.org). Pure gold braze has been used in the construction of single terminal feedthrough in low density hermetic packages utilizing a single platinum pin brazed to an alumina or sapphire ceramic donut ( brazed to a titanium case or ferrule for many years in implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP titanium has been performed and evaluated in this dissertation. Brazing has been done by using electrical resistance heating. The 96% alumina ceramic disk was manufactured by high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold performs were purchased from outside. Hermetic joints having leak rate of the order of 1.6 X 10-8 atm-cc/ sec on a helium leak detector were measured. Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for evaluation since all are refractory (less dissolution into molten gold), all form stable oxides (necessary for adhesion to alumina) and all are readily thin film deposited as metals. Wetting studies are also performed to determine the wetting angle of pure gold to Ti, Ta, Nb and W substrates. Nano tribological scratch testing of thin film of Nb (which demonstrated the best wetting properties towards gold) on polished 96% alumina ceramic is performed to determine the adhesion strength of thin film to the substrate. The wetting studies also determined the thickness of the intermetallic compounds layers formed between Ti and gold, reaction microstructure and the dissolution of the metal into the molten gold.
159

An Energy Based Nanomechanical Properties Evaluation Method for Cementitious Materials

Jha, Kaushal K 31 May 2012 (has links)
Advances in multiscale material modeling of structural concrete have created an upsurge of interest in the accurate evaluation of mechanical properties and volume fractions of its nano constituents. The task is accomplished by analyzing the response of a material to indentation, obtained as an outcome of a nanoindentation experiment, using a procedure called the Oliver and Pharr (OP) method. Despite its widespread use, the accuracy of this method is often questioned when it is applied to the data from heterogeneous materials or from the materials that show pile-up and sink-in during indentation, which necessitates the development of an alternative method. In this study, a model is developed within the framework defined by contact mechanics to compute the nanomechanical properties of a material from its indentation response. Unlike the OP method, indentation energies are employed in the form of dimensionless constants to evaluate model parameters. Analysis of the load-displacement data pertaining to a wide range of materials revealed that the energy constants may be used to determine the indenter tip bluntness, hardness and initial unloading stiffness of the material. The proposed model has two main advantages: (1) it does not require the computation of the contact area, a source of error in the existing method; and (2) it incorporates the effect of peak indentation load, dwelling period and indenter tip bluntness on the measured mechanical properties explicitly. Indentation tests are also carried out on samples from cement paste to validate the energy based model developed herein by determining the elastic modulus and hardness of different phases of the paste. As a consequence, it has been found that the model computes the mechanical properties in close agreement with that obtained by the OP method; a discrepancy, though insignificant, is observed more in the case of C-S-H than in the anhydrous phase. Nevertheless, the proposed method is computationally efficient, and thus it is highly suitable when the grid indentation technique is required to be performed. In addition, several empirical relations are developed that are found to be crucial in understanding the nanomechanical behavior of cementitious materials.
160

Evaluation of mechanical properties of dental tissue of patients who undergone radiotherapy = Análise das propriedades mecânicas dos tecidos dentários de pacientes submetidos à radioterapia / Análise das propriedades mecânicas dos tecidos dentários de pacientes submetidos à radioterapia

Galetti, Roberta, 1985- 27 February 2015 (has links)
Orientadores: Alan Roger dos Santos Silva, Mario Fernando de Goes / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba / Made available in DSpace on 2018-08-27T11:09:29Z (GMT). No. of bitstreams: 1 Galetti_Roberta_D.pdf: 1569073 bytes, checksum: f84fb18eb55733435da2efbd0ee7ed07 (MD5) Previous issue date: 2015 / Resumo: Este estudo avaliou o comportamento mecânico de tecidos dentários de pacientes com câncer de cabeça e pescoço submetidos à radioterapia. No capítulo I, o ensaio mecânico da nanoindentação foi utilizado para determinar a dureza e módulo de elasticidade do esmalte, dentina e da região de união restauradora em dentina (adesivo, camada híbrida e dentina subjacente). Foram utilizados seis dentes incisivos inferiores irradiados in vivo e não irradiados (grupos controle). A dureza e o módulo de elasticidade e foram obtidos após a realização da nanoindentação com pico de força de 1000 µN em dentina intertubular e região de união restauradora e 1500 µN em esmalte (centro do prisma) usando o microscópio de força atômica equipado com nanoidentador com tempo 5-2-5 seg para carregamento, aplicação e descarregamento da carga. A análise de variância a um fator foi aplicada com nível de significância de 0.05%. O valor da nanodureza e módulo de elasticidade não foram estatisticamente diferentes entre os tecidos avaliados em ambos os grupos irradiados e controle. Desta foma, pode-se concluir que tanto a dureza como o módulo de elasticidade de dentes submetidos à radioterapia in vivo não apresentam alterações das propriedades mecânicas no esmalte, dentina e região de união adesivo/dentina devido á ação direta da radioterapia. No capítulo II, foram avaliadas as propriedades viscoelásticas (storage e loss modulus) de três regiões diferentes: esmalte, junção amelo-dentinária (JAD) e dentina de dentes irradiados in vivo. Cinco dentes não irradiados (grupo de controle, n = 5) e cinco dentes irradiados in vivo (grupo irradiado, n = 5) foram utilizados para produzir cinco fatias de cada para avaliar a três áreas distintas: o esmalte, o JAD , e a dentina. A análise por mapeamento (Modulus Mapping Analysis) foi escolhida para avaliar a perda e armazenamento de energia mediante uma carga aplicada. Três regiões de dados foram coletados de cada área de tecido de cada fatia, totalizando quinze mapeamentos por tecido por grupo. Os valores do módulo foram calculados pelo software Hysitron® e a análise da variância (ANOVA Plot Split) e teste de Tukey a 5% de significância foram utilizados para comparar os grupos e tecidos. As três áreas avaliadas de ambos os grupos controle e irradiado revelaram diferença estatística no módulo de perda e armazenamento. Ambos os valores de perda e de armazenamento apresentaram-se maiores no grupo irradiado para esmalte (164,44 ± 36,60 GPa; 177,59 ± 58,84 GPa), JAD (50,85 ± 35,78 GPa; 83,33 ± 38,59 GPa) e dentina (21,18 ± 18,61 GPa; 52,44 ± 26,56 GPa) do que no grupo controle para o esmalte (127,15 ± 74,45 GPa; 162,85 ± 74,63 GPa), JAD (25,72 ± 9,64 GPa; 21,93 ± 52,78 GPa) e dentina (10,39 ± 8,65 GPa; 32,10 ± 20,39 GPa), respectivamente. Foi possível concluir neste estudo, que as propriedades viscoelásticas dos dentes irradiados in vivo apresentam-se diferentes das do grupo controle. Estes resultados sugerem que, após a radioterapia, os tecidos dentais estariam mais suscetíveis a fraturas / Abstract: This study evaluated the mechanic properties of enamel, dentin, and dentin bond interface of patients who undergone head and neck cancer treatment. On I chapter, the nanoindentation technique was used to determine the hardness (H) and reduced modulus of elasticity (Er) of the control group on enamel, dentin, and dentin bond interface (adhesive layer, hybrid layer and underlyer dentin). The Er and H were obtained after completion of nanoindentation with peak force of 1000 µN on intertubular dentin and restorative dentin interfaces and 1500 µN on enamel (prism center) using the atomic force microscope with nanoindenter accopled with test time 5-2-5 seconds for loading, holding and unloading. The one-way analysis of variance (p'< ou ='0.05) was applied and the valus for H and Er for both groups and tissues were no statistical different. As conclusion, the nanohardeness and elastic modulus behavior of the enamel, dentin and dentin bond interface was not impacted by the radiotherapy treatment of head and neck cancer. On II chapter, the viscoelastic properties were assessed (storage and loss modulus) of three different regions: enamel, dentin-enamel junction (DEJ) and dentin irradiated teeth in vivo. Five non irradiated teeth (control group, n=5) and five in vivo irradiated teeth (irradiated group, n=5) were used to produce five beams that were used to evaluate three different areas: the enamel, the DEJ, and the dentin. Perpendicular sections to the long axis of the teeth were made at middle region of the crown to produce the beams. The Modulus Mapping Analysis was chosen to evaluate the loss and storage moduli of each area. Three data regions were collected of each tissue area of each beam, summing a total of fifteen data per tissue per group. The modulus values were calculated by the Hysitron® software and an Analysis of Variance (ANOVA Split Plot) and Tukey test at 5% of significance was used to compare groups and tissues. All the three areas evaluated of control and irradiated group revealed statistical difference on the Loss and Storage Moduli. Both the loss and storage values are higer on the irradiated group for enamel (164.44±36.60 GPa; 177.59±58.84 GPa), DEJ (50.85±35.78 GPa; 83,33±38,59 GPa) and dentin (21.18±18.61 GPa; 52.44±26.56 GPa) than control group values for enamel (127.15±74.45 GPa; 162.85±74.63 GPa), DEJ (25.72±9.64 GPa; 21.93±52.78 GPa) and dentin (10.39±8.65 GPa;32,10±20,39 GPa), respectivally. The viscoelastic properties of in vivo irradiated teeth are different from control group. The enamel, DEJ and dentin presented the higer values on the in vivo irradiated group. These finds suggest that after radiotherapy, the dental tissues are more susceptible to fractures / Doutorado / Materiais Dentarios / Doutora em Materiais Dentários

Page generated in 0.0965 seconds