Spelling suggestions: "subject:"[een] NETWORK CAMERAS"" "subject:"[enn] NETWORK CAMERAS""
1 |
Automated Discovery of Real-Time Network Camera Data from Heterogeneous Web PagesRyan Merrill Dailey (8086355) 14 January 2021 (has links)
<div>Reduction in the cost of Network Cameras along with a rise in connectivity enables entities all around the world to deploy vast arrays of camera networks. Network cameras offer real-time visual data that can be used for studying traffic patterns, emergency response, security, and other applications. Although many sources of Network Camera data are available, collecting the data remains difficult due to variations in programming interface and website structures. Previous solutions rely on manually parsing the target website, taking many hours to complete. We create a general and automated solution for indexing Network Camera data spread across thousands of uniquely structured webpages. We analyze heterogeneous webpage structures and identify common characteristics among 73 sample Network Camera websites (each website has multiple web pages). These characteristics are then used to build an automated camera discovery module that crawls and indexes Network Camera data. Our system successfully extracts 57,364 Network Cameras from 237,257 unique web pages. </div>
|
2 |
[pt] IDENTIFICAÇÃO E MAPEAMENTO DAS PROPRIEDADES DAS ONDAS ATRAVÉS DE SENSOR REMOTO DE VÍDEO / [en] IDENTIFYING AND MAPPING WAVES PROPERTIES USING REMOTE SENSING VIDEOLAURO HENRIKO GARCIA ALVES DE SOUZA 26 April 2021 (has links)
[pt] A avaliação das condições do mar por meio de instrumentos in situ na zona de
surfe é muito desafiante. Nesse ambiente, temos a quebra das ondas e presença
de banhistas. A quebra das ondas gera grande dissipação de energia, o que
pode danificar os instrumentos e possivelmente causar um choque entre o
instrumento e os banhistas. Uma solução para auferir as condições do mar com
sensor remoto pode apresentar grande vantagem. Neste trabalho, é proposto
um método de visão computacional tradicional, uma vez que não há um banco
público de imagens de ondas para a utilização de redes neurais. Utilizamos
câmeras de rede convecionais e de baixo custo já largamente instaladas nos
principais pontos de surfe do Brasil e do mundo fazendo com que o nosso
método fique mais acessível a todos. Com ele, conseguimos extrair propriedades
das ondas, como distância, frequência, direção, posição no mundo, percurso,
velocidade, intervalo entre séries e altura da face da onda, e prover uma análise
quantitativa das condições do mar. Esses dados devem servir às áreas de
Oceanografia, de Engenharia Costeira, de Segurança do mar e ao novo esporte
olímpico: surfe. / [en] Evaluating sea conditions in the nearshore through in situ instruments can
be challenging. This environment is exposed to wave breaking and civilian
recreation. Wave breaking dissipates energy, which can lead to damaging the
instrument and possibly causing shock with civilians. A solution to acquire sea
conditions data through remote sensing can be of great advantage. This work,
presents a traditional computer vision method, since there is no public wave
image dataset. Low cost conventional network cameras are used, which are
already installed in the main surfing spots around the world makng our method
more accessible to the general public. With it, we are able to extract wave
properties such as length, frequency, direction, world position, path, speed and
sets interval. This data should serve as input to areas such as Oceanography,
Coast Engineering, water safety and the new Olympic Game: Surfing.
|
Page generated in 0.0395 seconds