• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automated Discovery of Real-Time Network Camera Data from Heterogeneous Web Pages

Ryan Merrill Dailey (8086355) 14 January 2021 (has links)
<div>Reduction in the cost of Network Cameras along with a rise in connectivity enables entities all around the world to deploy vast arrays of camera networks. Network cameras offer real-time visual data that can be used for studying traffic patterns, emergency response, security, and other applications. Although many sources of Network Camera data are available, collecting the data remains difficult due to variations in programming interface and website structures. Previous solutions rely on manually parsing the target website, taking many hours to complete. We create a general and automated solution for indexing Network Camera data spread across thousands of uniquely structured webpages. We analyze heterogeneous webpage structures and identify common characteristics among 73 sample Network Camera websites (each website has multiple web pages). These characteristics are then used to build an automated camera discovery module that crawls and indexes Network Camera data. Our system successfully extracts 57,364 Network Cameras from 237,257 unique web pages. </div>
2

[pt] IDENTIFICAÇÃO E MAPEAMENTO DAS PROPRIEDADES DAS ONDAS ATRAVÉS DE SENSOR REMOTO DE VÍDEO / [en] IDENTIFYING AND MAPPING WAVES PROPERTIES USING REMOTE SENSING VIDEO

LAURO HENRIKO GARCIA ALVES DE SOUZA 26 April 2021 (has links)
[pt] A avaliação das condições do mar por meio de instrumentos in situ na zona de surfe é muito desafiante. Nesse ambiente, temos a quebra das ondas e presença de banhistas. A quebra das ondas gera grande dissipação de energia, o que pode danificar os instrumentos e possivelmente causar um choque entre o instrumento e os banhistas. Uma solução para auferir as condições do mar com sensor remoto pode apresentar grande vantagem. Neste trabalho, é proposto um método de visão computacional tradicional, uma vez que não há um banco público de imagens de ondas para a utilização de redes neurais. Utilizamos câmeras de rede convecionais e de baixo custo já largamente instaladas nos principais pontos de surfe do Brasil e do mundo fazendo com que o nosso método fique mais acessível a todos. Com ele, conseguimos extrair propriedades das ondas, como distância, frequência, direção, posição no mundo, percurso, velocidade, intervalo entre séries e altura da face da onda, e prover uma análise quantitativa das condições do mar. Esses dados devem servir às áreas de Oceanografia, de Engenharia Costeira, de Segurança do mar e ao novo esporte olímpico: surfe. / [en] Evaluating sea conditions in the nearshore through in situ instruments can be challenging. This environment is exposed to wave breaking and civilian recreation. Wave breaking dissipates energy, which can lead to damaging the instrument and possibly causing shock with civilians. A solution to acquire sea conditions data through remote sensing can be of great advantage. This work, presents a traditional computer vision method, since there is no public wave image dataset. Low cost conventional network cameras are used, which are already installed in the main surfing spots around the world makng our method more accessible to the general public. With it, we are able to extract wave properties such as length, frequency, direction, world position, path, speed and sets interval. This data should serve as input to areas such as Oceanography, Coast Engineering, water safety and the new Olympic Game: Surfing.

Page generated in 0.0499 seconds