• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 279
  • 96
  • 72
  • 38
  • 16
  • 11
  • 7
  • 6
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 643
  • 643
  • 177
  • 109
  • 105
  • 103
  • 97
  • 97
  • 90
  • 79
  • 76
  • 73
  • 73
  • 71
  • 63
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Exploring Optically Tunable Metasurfaces with a Time-Resolved Terahertz Spectroscopy Technique

Jaber, Ahmed 05 January 2022 (has links)
This thesis will explore the ultrafast modulation and optical tunability of plasmonic filters in the terahertz (THz) spectral region. First, the principles and functional design of THz metasurfaces are explored through plasmonic surface lattice resonance interactions and lumped-element circuit models. We will then describe the methodology of generating and detecting THz radiation through the nonlinear processes of optical rectification and electrooptic sampling, respectively. Next, the implementation of a THz time-domain spectroscopy technique is discussed in the context of pump-probe measurements and time-domain resonance analysis. We then show how THz probed materials can be characterized in terms of a temporal and spectral analysis. We will demonstrate how this time-domain technique can allow us to characterize the interaction of plasmonic resonators with optically active substrates and 2D nanomaterials. A completely tunable THz plasmonic notch resonance is modulated utilizing a static and dynamic method of optical tunability in silicon. Active tunability is also demonstrated in a graphene-based plasmonic resonator through the hot carrier multiplication effect. The significance of this work lies in the application of designing controllable devices for future THz communication technologies.
162

Coupled-resonator-based metamaterials emulating quantum systems / 量子系を模擬する結合共振型メタマテリアル

Nakanishi, Toshihiro 25 January 2016 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(工学) / 乙第12984号 / 論工博第4131号 / 新制||工||1637(附属図書館) / 32454 / 京都大学大学院工学研究科電子物性工学専攻 / (主査)教授 北野 正雄, 教授 竹内 繁樹, 准教授 久門 尚史 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
163

Cascaded plasmon resonances for enhanced nonlinear optical response

Toroghi, Seyfollah 01 January 2014 (has links)
The continued development of integrated photonic devices requires low-power, small volume all-optical modulators. The weak nonlinear optical response of conventional optical materials requires the use of high intensities and large interaction volumes in order to achieve significant light modulation, hindering the miniaturization of all-optical switches and the development of lightweight transmission optics with nonlinear optical response. These challenges may be addressed using plasmonic nanostructures due to their unique ability to confine and enhance electric fields in sub-wavelength volumes. The ultrafast nonlinear response of free electrons in such plasmonic structures and the fast thermal nonlinear optical response of metal nanoparticles, as well as the plasmon enhanced nonlinear Kerr-type response of the host material surrounding the nanostructures could allow ultrafast all-optical modulation with low modulation energy. In this thesis, we investigate the linear and nonlinear optical response of engineered effective media containing coupled metallic nanoparticles. The fundamental interactions in systems containing coupled nanoparticles with size, shape, and composition dissimilarity, are evaluated analytically and numerically, and it is demonstrated that under certain conditions the achieved field enhancement factors can exceed the single-particle result by orders of magnitude in a process called cascaded plasmon resonance. It is demonstrated that these conditions can be met in systems containing coupled nanospheres, and in systems containing non-spherical metal nanoparticles that are compatible with common top-down nanofabrication methods such as electron beam lithography and nano-imprint lithography. We show that metamaterials based on such cascaded plasmon resonance structures can produce enhanced nonlinear optical refraction and absorption compared to that of conventional plasmonic nanostructures. Finally, it is demonstrated that the thermal nonlinear optical response of metal nanoparticles can be enhanced in carefully engineered heterogeneous nanoparticle clusters, potentially enabling strong and fast thermal nonlinear optical response in system that can be produced in bulk through chemical synthesis.
164

Nonlinear integrated photonics on silicon and gallium arsenide substrates

Ma, Jichi 01 January 2014 (has links)
Silicon photonics is nowadays a mature technology and is on the verge of becoming a blossoming industry. Silicon photonics has also been pursued as a platform for integrated nonlinear optics based on Raman and Kerr effects. In recent years, more futuristic directions have been pursued by various groups. For instance, the realm of silicon photonics has been expanded beyond the well-established near-infrared wavelengths and into the mid-infrared (3 - 5 µm). In this wavelength range, the omnipresent hurdle of nonlinear silicon photonics in the telecommunication band, i.e., nonlinear losses due to two-photon absorption, is inherently nonexistent. With the lack of efficient light-emission capability and second-order optical nonlinearity in silicon, heterogeneous integration with other material systems has been another direction pursued. Finally, several approaches have been proposed and demonstrated to address the energy efficiency of silicon photonic devices in the near-infrared wavelength range. In this dissertation, theoretical and experimental works are conducted to extend applications of integrated photonics into mid-infrared wavelengths based on silicon, demonstrate heterogeneous integration of tantalum pentoxide and lithium niobate photonics on silicon substrates, and study two-photon photovoltaic effect in gallium arsenide and plasmonic-enhanced structures. Specifically, performance and noise properties of nonlinear silicon photonic devices, such as Raman lasers and optical parametric amplifiers, based on novel and reliable waveguide technologies are studied. Both near-infrared and mid-infrared nonlinear silicon devices have been studied for comparison. Novel tantalum-pentoxide- and lithium-niobate-on-silicon platforms are developed for compact microring resonators and Mach-Zehnder modulators. Third- and second-harmonic generations are theoretical studied based on these two platforms, respectively. Also, the two-photon photovoltaic effect is studied in gallium arsenide waveguides for the first time. The effect, which was first demonstrated in silicon, is the nonlinear equivalent of the photovoltaic effect of solar cells and offers a viable solution for achieving energy-efficient photonic devices. The measured power efficiency achieved in gallium arsenide is higher than that in silicon and even higher efficiency is theoretically predicted with optimized designs. Finally, plasmonic-enhanced photovoltaic power converters, based on the two-photon photovoltaic effect in silicon using subwavelength apertures in metallic films, are proposed and theoretically studied.
165

Femtosecond Laser Written Volumetric Diffractive Optical Elements And Their Applications

Choi, Jiyeon 01 January 2009 (has links)
Since the first demonstration of femtosecond laser written waveguides in 1996, femtosecond laser direct writing (FLDW) has been providing a versatile means to fabricate embedded 3-D microstructures in transparent materials. The key mechanisms are nonlinear absorption processes that occur when a laser beam is tightly focused into a material and the intensity of the focused beam reaches the range creating enough free electrons to induce structural modification. One of the most useful features that can be exploited in fabricating photonic structures is the refractive index change which results from the localized energy deposition. The laser processing system for FLDW can be realized as a compact, desktop station, implemented by a laser source, a 3-D stage and focusing optics. Thus, FLDW can be readily adopted for the fabrication of the photonic devices. For instance, it has been widely employed in various areas of photonic device fabrication such as active and passive waveguides, couplers, gratings, opto-fluidics and similar applications. This dissertation describes the use of FLDW towards the fabrication of custom designed diffractive optical elements (DOE’s). These are important micro-optical elements that are building blocks in integrated optical devices including on-chip sensors and systems. The fabrication and characterization of laser direct written DOEs in different glass materials is investigated. The design and performance of a range of DOE’s is described, especially, laser-written embedded Fresnel zone plates and linear gratings. Their diffractive efficiency as a function of the fabrication parameters is discussed and an optimized fabrication process is realized. The potential of the micro-DOEs and their integration shown in this dissertation will impact on the fabrication of future on-chip devices involving customized iv DOEs that will serve great flexibility and multi-functional capability on sensing, imaging and beam shaping.
166

Numerical Modeling Of Wave Propagation In Nonlinear Photonic Crystal Fiber

Khan, Md. Kaisar 01 January 2008 (has links)
In this dissertation, we propose numerical techniques to explain physical phenomenon of nonlinear photonic crystal fiber (PCF). We explain novel physical effects occurred in PCF subjected to very short duration pulses including soliton. To overcome the limitations in the analytical formulation for PCF, an accurate and efficient numerical analysis is required to explain both linear and nonlinear physical characteristics. A vector finite element based model was developed to precisely synthesize the guided modes in order to evaluate coupling coefficients, nonlinear coefficient and higher order dispersions of PCFs. This finite element model (FEM) is capable of evaluating coupling length of directional coupler implemented in dual core PCF, which was supported by existing experimental results. We used the parameters extracted from FEM in higher order coupled nonlinear Schrödinger equation (HCNLSE) to model short duration pulses including soliton propagation through the PCF. Split-step Fourier Method (SSFM) was used to solve HCNLSE. Recently, reported experimental work reveals that the dual core PCF behaves like a nonlinear switch and also it initiates continuum generation which could be used as a broadband source for wavelength division multiplexing (WDM). These physical effects could not be explained by the existing analytical formulae such as the one used for the regular fiber. In PCF the electromagnetic wave encounters periodic changes of material that demand a numerical solution in both linear and nonlinear domain for better accuracy. Our numerical approach is capable of explaining switching and some of the spectral features found in the experiment with much higher degree of design freedom. Numerical results can also be used to further guide experiments and theoretical modeling.
167

Ultrafast Imaging of Energy and Charge Transfer at Nanoscale Interfaces

Daria D Blach (14212742) 09 December 2022 (has links)
<p> The interaction of light with semiconductors provides essential insight into their electronic and photonic properties. Excitons, excited electron-hole pairs, determine the optical response of nanomaterials and act as nanoscale energy carriers, making excitonic materials excellent candidates for optoelectronic, photovoltaic, and quantum devices. Unique phenomena can be brought about by using excitonic materials as building blocks in designing new systems and taking advantage of excitons’ dimensionality. For example, growing quantum dots into highly ordered arrays enhances exciton transport due to the strong dipolar coupling between excitons. Alternatively, forming vertical heterostructures between monolayer transition metal dichalcogenides introduces moiré superlattices, which localize the excitons introducing nonlinear interactions that be exploited for quantum information processing. Understanding these complex excitonic systems requires experimental tools capable of high spatial and temporal resolutions.</p> <p><br></p> <p>This thesis aims to contribute to understanding the complex excitons and charges formed at nanoscale interfaces with ultrafast techniques. In the discussed work, we take advantage of the 100s of fs time resolution and 10s of nm spatial precision to visualize exciton migration and dynamics associated with complex excitonic systems. First, we introduce the optical techniques needed to help us understand the fundamental photophysics of the studied systems (Chapter 2). Next, we provide an example of how we can use these methods to understand exciton coherence in perovskite quantum dot solids exhibiting superradiance (Chapter 3) and enhanced exciton transport (Chapter 4) due to low disorder and strong dipolar coupling. We also characterize and explore the behavior of highly excited excitons, Rydberg states, in transition metal dichalcogenides (Chapter 5). Then, we examine the properties of heterostructures formed between two monolayers of transition metal dichalcogenides exhibiting moiré superlattices and investigate the nonlinear exciton-exciton interactions modulated by the moiré potentials (Chapter 6). We also explore charge carrier behavior at interfaces of two different excitonic materials in molybdenum disulfide-single-wall carbon nanotube heterojunctions containing one- and two-dimensional excitons (Chapter 7). Finally, we visualize and quantify charge carrier migration across an alloyed cadmium sulfide and cadmium selenide lateral heterojunction (Chapter 8). We hope to give the reader a better understanding of these complex systems and open up new possibilities for their efficient use through the results presented in this thesis. </p>
168

Integrated and Phased-Matched Nonlinear Optics in 3R Phase Transition Metal Dichalcogenides

Xu, Xinyi January 2024 (has links)
Nonlinear frequency conversion provides essential tools for generating new colors and quantum states of light. Conventional nonlinear crystals have the problem of relative lower nonlinear susceptibilities, which result in the large footprint of devices and low efficient. Transition metal dichalcogenides possess huge nonlinear susceptibilities; further, 3R-stacked transition metal dichalcogenide crystals possess aligned layers with broken inversion symmetry, representing ideal candidates to boost the nonlinear optical gain with minimal footprint. Here we report the second-order nonlinear processes of 3R-MoS2 along the ordinary and extraordinary directions. Along the ordinary axis, by measuring the thickness-dependent second-harmonic generation, we present the first measurement of the second harmonic-generation coherence length of 3R-MoS2 and achieve record nonlinear optical enhancement from a van der Waals material, >104 stronger than a monolayer. It is found that 3R-MoS2 slabs exhibit similar conversion efficiencies of lithium niobate, but within 100-fold shorter propagation lengths. Furthermore, along the extraordinary axis, we achieve broadly tunable second-harmonic generation from 3R-MoS2 in a waveguide geometry, revealing the coherence length in such a structure. We characterize the full refractive-index spectrum and quantify its birefringence with near-field nanoimaging. In order to bring 3R-MoS2 into the application field, we have developed two fabrication methods: low-cost femtosecond laser etching and cleanroom nanolithography-based processes. The femtosecond laser writing setup offers a rapid, residue-free, and in-situ method for patterning grating structures. On the other hand, the cleanroom process can provide structures with higher resolution. The cleanroom fabrication process is based on SF6 RIE and E-beam lithography, which can narrow down the minimum linewidth to ~120nm. To achieve mode matching in waveguiding second-order nonlinear conversion, we utilized the mode dispersion relation calculated by an anisotropic model to find the overlapping of wavevectors among different photon energies. We proposed a molybdenum disulfide on silicon nitride structure (MOSS) to further unleash the potential of 3R-MoS2 in optical parametric conversion. Photonic structure optimization was performed using the Lumerical FDTD simulator, achieving a 90% coupling efficiency from SiN to 3R-MoS2 with a taper structure. With a taper length of 50μm, we successfully maintained a single mode of excitation wave in MoS2, which could provide a monotonoic mode source for nonlinear conversion. Our work highlights the potential of 3R-stacked transition metal dichalcogenides for integrated photonics, providing critical parameters, developing high-resolution fabrication processes, and offering initial designs for highly efficient on-chip nonlinear optical devices including periodically poled structures, optical parametric oscillators and amplifiers, and quantum circuits.
169

INVESTIGATIONS OF TEMPORAL RESHAPING DURING FILAMENTARY PROPAGATION WITH APPLICATION TO IMPULSIVE RAMAN SPECTROSCOPY

Odhner, Johanan January 2012 (has links)
Femtosecond laser filamentation in gaseous media is a new source of broadband, ultrashort radiation that has the potential for application to many fields of research. In this dissertation filamentation is studied with a view to understanding the underlying physics governing the formation and propagation dynamics of filamentation, as well as to developing a method for vibrational spectroscopy based on the filament-induced impulsive vibrational excitation of molecules in the filamentation region. In pursuit of a better understanding of the underlying physical processes driving filamentation, the development of a new method for characterizing high intensity ultrashort laser pulses is presented, wherein two laser beams generate a transient grating in a noble gas, causing the pulse undergoing filamentation to diffract from the grating. Measuring the spectrum as a function of time delay between the filament and probe beams generates a spectrogram that can be inverted to recover the spectral and temporal phase and amplitude of the filamentary pulse. This technique enables measurement of the filamentary pulse in its native environment, offering a window into the pulse dynamics as a function of propagation distance. The intrinsic pulse shortening observed during filamentation leads to the impulsive excitation of molecular vibrations, which can be used to understand the dynamics of filamentation as well. Combined measurements of the longitudinally-resolved filament Raman spectrum, power spectrum, and fluorescence intensity confirm the propagation dynamics inferred from pulse measurements and show that filamentation provides a viable route to impulsive vibrational spectroscopy at remote distances from the laser source. The technique is applied to thermometry in air and in flames, and an analytical expression is derived to describe the short-time dynamics of the rovibrational wave-packet dispersion experienced by diatomic molecules in the wave of the filament. It is found that no energy is initially partitioned into the distribution of rovibrational states during the filamentation process. Filament-assisted impulsive stimulated Raman spectroscopy of more complex systems is also performed, showing that filament-assisted vibrational measurements can be used as an analytical tool for gas phase measurements and has potential for use as a method for standoff detection. Finally, a study of the nonlinear optical mechanisms driving the filamentation process is conducted using spectrally-resolved pump-probe measurements of the transient birefringence of air. Comparison to two proposed theories shows that a newly described effect, ionization grating-induced birefringence, is largely responsible for saturation and sign inversion of the birefringence at 400 nm and 800 nm, while the magnitude of contributions described by a competing theory that relies on negative terms in the power series expansion of the bound electron response remain undetermined. / Chemistry
170

STRONG FIELD NONLINEAR OPTICS IN ATOMS AND POLYATOMIC MOLECULES: APPLICATION OF QUANTUM MECHANICAL METHODS TO PREDICT AND CONTROL LASER-INDUCED PROCESSES

Tarazkar, Maryam January 2015 (has links)
The central objective of this dissertation is developing new methods for calculating higher-order nonlinear optical responses of atoms, molecules, and ions, and discussing the relevant physical mechanisms that give rise to harmonic generation, Kerr effect, and higher-order Kerr effect. The applications of nonlinear optical properties in development of predictive models for femtosecond laser filamentation dynamics, photoemission spectroscopy, imaging, and design of new molecular systems have motivated the theoretical investigations in advancing methods for calculating nonlinear optical properties and finding the optimum conditions for controlling the nonlinearities. The time-dependent nonlinear refractive index coefficient 4 n is investigated for argon and generalized for all noble gas atoms helium, neon, krypton, and xenon in the wavelengths ranging from 250 nm to 2000 nm, using ab initio methods. The secondorder polynomial fitting of DC-Kerr, electric-field-induced second-harmonic generation (ESHG), and static second-order hyperpolarizability have been performed, using an auxiliary electric field approach to obtain the corresponding fourth-order optical properties. An expression on the basis of static, DC-Kerr, DFWM fourth-order hyperpolarizability is derived, which allows the calculations of the DSWM coefficients with considerably reduced error. The results of the calculations suggest that filament stabilization is most likely to be induced by the generation of free electrons. Applications of these calculations resolve the HOKE controversy and are important for the development of predictive models for femtosecond laser filamentation dynamics. In a series of proof-of-concept studies, the approach was employed for calculating dynamic linear and nonlinear hyperpolarizability of the radical cations. In this regard, the polarizability and second-order hyperpolarizability of nitrogen radical cation were investigated, using density functional theory (DFT) and multi-configurational self-consistent field (MCSCF) methods. The open-shell electronic system of nitrogen radical cation provides negative second-order optical nonlinearity, suggesting that the hyperpolarizability coefficient for nitrogen radical cation, in the non-resonant regime is mainly composed of combinations of virtual one-photon transitions rather than two-photon transitions. The calculations of second-order optical properties for nitrogen radical cation as a function of bond length have been investigated to study the effect of internuclear bond distance on optical process. The variation of nonlinear responses versus bond length shows the potential application in finding optimum conditions for higher values of nonlinear coefficients. Furthermore, the computation of dynamic second-order hyperpolarizabilities for multiply ionized noble gases have been studied in the wavelength ranging from 100 nm to the red of the first multi-photon resonance all the way toward the static regime, using the MCSCF method. The results indicate that the second-order hyperpolarizability coefficients decrease when the electrons are removed from the systems. As the atoms reach higher ionization states, the second-order hyperpolarizability responses as a function of wavelength, become less dispersive. The second-order hyperpolarizability coefficients for each ionized species have also been investigated in terms of quantum state symmetries; the results suggest that the sign of the optical responses for each ionized atom depends on the spin of the quantum states defined for the ionized species. The calculations are of value for predictive models of high-harmonic generation in multiply ionized plasma at X-ray photon energies. This research also focuses on investigating possible mechanisms for photodissociation of polyatomic molecules (acetophenone and the substituted derivatives) ionized through strong field infrared laser pulses. In this regard, quantum mechanical methods are combined with pump-probe spectroscopy to understand and control the dissociation dynamics in strong field regime. The applications of quantum mechanical models in interpreting time-resolved wavepacket dynamics and achieving coherent control has stimulated the interest to explore the PESs and investigate the role of conical intersections in wavepacket dynamics in strong field regime. The electronic ground and excited states for acetophenone radical cation and the substituted derivatives have been investigated to probe the resonance features observed in measurements at 1370 nm with laser intensity of 1013 W cm-2. The ten lowest lying ionic potential energy surfaces (PESs) of the acetophenone radical cation were explored, and the three-state conical intersection was mapped onto the PES, using MCSCF model to propose a photo-dissociation mechanism for acetophenone undergoing tunnel ionization and elucidate the potential dissociation pathways for formation of benzoyl fragment ion, as well as phenyl, acylium, and butadienyl small fragment ions. Similar calculations are presented for propiophenone radical cation which support the existence of a one-photon transition from the ground ionic to a bright dissociative D2 state, where motion of the acetyl group from a planar to nonplanar structure within the pulse duration enables the otherwise forbidden transition. The wavepacket dynamics in acetophenone molecular ion is modeled using the classical wavepacket trajectory calculations, to propose the mechanism wherein the 790 nm probe pulse excites a wavepacket on the ground surface D0 to the excited D2 surface at a delay of 325 fs. The innovations of this research are used to design control strategies for selective bond-breaking in acetophenone radical cation, as well as design control schemes for other molecules. / Chemistry

Page generated in 0.0689 seconds