• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 279
  • 96
  • 72
  • 38
  • 16
  • 11
  • 7
  • 6
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 643
  • 643
  • 177
  • 109
  • 105
  • 103
  • 97
  • 97
  • 90
  • 79
  • 76
  • 73
  • 73
  • 71
  • 63
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

An all-fibre laser distance measurement system utilising figure-eight fibre lasers with electro-optic amplitude modulation

Du Plessis, Jan Harm 30 August 2010 (has links)
M.Ing. / The aim of this project is to research the feasibility of an all-fibre laser distance measurement device that utilises a figure-eight fibre laser (F8L), in the nonlinear amplifying loop mirror (NALM) configuration, as a light source and implements pulse compression to improve the accuracy and signal-to-noise ratio of the system. A figure-eight fibre laser in the NALM configuration for use in a laser distance measurement device is described. The theory of fibre lasers is discussed, including mode-locking and Qswitching, and the characteristics of a NALM loop are analysed. By varying the length of the NALM loop from 500 m to 2000 m or inserting highly nonlinear dispersion shifted fibre, a variety of pulses in the picosecond to nanosecond range can be produced. The lengths of the pulses depend on the length of the NALM loop, the pump power and the setting of the polarisation controllers. The figure-eight fibre laser is pumped with a 980 nm laser diode up to 550 mA, which corresponds to 320 mW. Distance measurements are done with short unmodulated and long modulated pulses. Distance measurement with short unmodulated pulses is discussed only briefly and tested with a simple experiment. The focus of this project is distance measurement with long modulated pulses. A low autocorrelated binary sequence is modulated onto one of the long pulses produced by the figure-eight fibre laser by an electro-optic amplitude modulator. The long pulse gives the proposed system a good signal-to-noise ratio (SNR), while the modulation improves the accuracy. A Barker code of length 13 is proposed as modulation code because of its good autocorrelation properties. The Barker code will improve the accuracy 13-fold, with a corresponding increase in SNR. An electro-optic amplitude modulator is used to implement the modulation. The modulated long pulse is then sent to a target. After reflection, the signal is detected and cross-correlated to obtain the time-of-flight for the pulse. The code generation and cross-correlation are implemented with an FPGA via VHDL programming. The distance to a target can be calculated by knowing the time-of-flight and the speed of light in the propagation medium. In this project the resolution, single-shot precision, accuracy, linearity, repeatability and maximum unambiguous distance of the proposed all-fibre laser distance measurement device are examined.
152

Photophysical studies of zinc and indium tetraaminophthalocyanines in the presence of CdTe quantum dots

Britton, Jonathan January 2010 (has links)
CdTe QDs capped with mercaptopropionic acid (MPA) and thioglycolic acid (TGA) were covalently linked to zinc and indium tetraaminophthalocyanines (TAPcs) using N-ethyl-N(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) as the coupling agents. The results presented give evidence in favour of formation of an amide bond between the MTAPc and CdTe QDs. Both the linked ZnTAPc–QD complexes and the mixture of QDs and ZnTAPc (without chemical linking) showed Förster resonance energy transfer (FRET), though the linked showed less FRET, whereas the QD interactions with InTAPc yielded no evidence of FRET. Both MTAPcs quenched the QDs emission, with quenching constants of the order of 103–104M−1, binding constants of the order of 108-1010M-1 and the number of binding sites for the MTAPc upon the QD being 2. High energy transfer efficiencies were obtained (in some cases as high as 93%), due to the low donor to acceptor distances. Lastly, both MTAPc were shown to be poor optical limiters because their imaginary third-order susceptibility (Im[χ(3)]) was of the order of 10-17-10-16 (optimal range is 10-9-10-11), the hyperpolarizability (γ) of the order of 10-37-10-36 (optimal range is 10-29-10-34) and the k values were above one but below ten.
153

Synthesis and structure of bithiophene complexes

Van Staden, Mandy 21 November 2005 (has links)
Please read the abstract in the section front of this document. / Dissertation (MSc (Chemistry))--University of Pretoria, 2006. / Chemistry / unrestricted
154

High resolution submillimeter-wave spectroscopy using non-collinear mixing of laser radiation.

Mandel, Paul D., 1953- January 1976 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Physics, 1976 / Includes bibliographical references. / M.S. / M.S. Massachusetts Institute of Technology, Department of Physics
155

Stimulated Raman spectroscopic imaging: data science driven innovations & applications

Lin, Haonan 25 September 2021 (has links)
Stimulated Raman scattering (SRS) imaging is a chemical imaging scheme that can visualize cellular content based on intrinsic chemical bond vibrations. To resolve chemicals with overlapping Raman bands, spectroscopic SRS platforms have been developed. To date, endeavors on high-speed instrumentation have achieved spectral acquisition at the microsecond level, enabling in vivo imaging of cells and tissues. Nevertheless, due to the extremely small Raman cross-sections, the current performance of SRS is bounded by a design space that trades off speed, signal fidelity, and spectral bandwidth. The lack of tailored data mining algorithms further limits the chemical information one can extract from the spectroscopic images. My thesis work focuses on developing computational SRS imaging approaches to break the physical tradeoffs and novel data analytical tools to decipher essential chemical information from stimulated Raman spectroscopic images. Utilizing data redundancy of spectroscopic images, we developed two compressive sensing schemes to improve the imaging speed by one order of magnitude without information loss. To break the sensitivity limit, we proposed an ultrafast spectroscopic SRS system and further integrated it with a deep neural network to synergistically achieve microsecond level imaging in the fingerprint region. To improve the chemical specificity and content levels, we implemented a sparsity-regularized spectral unmixing algorithm, realizing multiplexed imaging of up to six major metabolites in a cell. Finally, enabled by advances in low-exposure imaging and spectral unmixing, longitudinal imaging of biofuel synthesis in live cells with sophisticated chemical information is demonstrated. / 2022-09-24T00:00:00Z
156

Ultrasensitive Technique for Measurement of Two-Photon Absorption

Miller, Steven A. (Steven Alan) 12 1900 (has links)
Intensive demands have arisen to characterize nonlinear optical properties of materials for applications involving optical limiters, waveguide switches and bistable light switches. The technique of Pulse Delay Modulation is described which can monitor nonlinear changes in transmission with shot noise limited signal-to-noise ratios even in the presence of large background signals. The theoretical foundations of the experiment are presented followed by actual measurements of beam depletion due to second harmonic generation in a LiIO3 crystal and two-photon absorption in the semiconductor ZnSe. Sensitivity to polarization rotation arising from the Kerr Effect in carbon disulfide, saturable absorber relaxation in modelocking dyes and photorefractive effects in ZnSe are demonstrated. The sensitivity of Pulse Delay Modulation is combined with Fabry-Perot enhancement to allow the measurement of two-photon absorption in a 0.46pm thick interference filter spacer layer. Also included is a study of nonlinear optical limiting arising from dielectric breakdown in gases.
157

Real-time characterization of transient dynamics in thulium-doped mode-locked fiber laser

Zeng, Junjie 24 May 2022 (has links)
Thulium (Tm) based high repetition rate compact optical frequency comb sources operating in the 2 µm regime with femtosecond pulse durations enable a wide range of applications such as precise micro-machining, spectroscopy and metrology. Applications such as metrology and spectroscopy rely on the stability of mode-locked lasers (MLLs) which provide extreme precision, yet, the complex dynamics of such highly nonlinear systems result in unstable events which could hinder the normal operation of a MLL. MLL as a nonlinear system inherently exists a wide variety of complex attractors, which are sets of states that the system tends to evolve toward, exhibiting unique behaviors. Complex phenomena including pulsating solitons, chaotic solitons, period-doubling, soliton explosion, etc., have been predicted theoretically and observed experimentally in the past decade. However, most experimental observations rely on conventional characterization methods, which are limited to the scanning speed of the spectrometer and the electronic speed of photodetector and digitizer, so that the details of the non-repetitive events can be buried. In recent years, a technique called dispersive Fourier transform (DFT) has been developed and allows consecutive recordings of the pulse-to-pulse spectral evolution of a femtosecond pulse train, opening a whole new world of nonlinear dynamics in MLL. In this dissertation, we first demonstrate the ability of scaling the repetition rate of a Tm MLL to repetition rate as high as 1.25 GHz through miniaturizing the cavity. Our approach of maintaining comparable pulse energies while scaling the repetition rates allows a high-quality femtosecond mode-locking performance with low noise performance in Tm soliton lasers. Then we experimentally study the transition dynamics between consecutive multi-pulsing states through adjusting pump power with a constant rate in an erbium-doped fiber laser, specifically the build-up and annihilation of soliton pulses between a double pulsing and a three-pulse state utilizing DFT. To investigate real-time laser dynamics in Tm based laser systems, we propose and develop a DFT system that up-converts the signal to the 1 µm regime via second harmonics generation (SHG) and stretches the signal in a long spool of single-mode fiber to realize DFT. This approach overcomes the limitation of bandwidth of 2 µm photodetector and high intrinsic absorption of 2 µm light in fused silica fibers. The SHG-DFT system is used to study dynamics of both explosions in a chaotic state between stable single-pulsing and double-pulsing state, and explosions induced by soliton collision in a dual-wavelength vector soliton state. We also study dynamics of transient regimes in a Tm-doped fiber ring laser that can be switched between conventional soliton and dissipative soliton, revealing how spectral filtering plays a role in obtaining stable stationary states. / 2022-11-23T00:00:00Z
158

Optical Limiting and Degenerate Four-Wave Mixing in Novel Fullerenes

Marciu, Daniela 23 February 1999 (has links)
Two experimental methods, optical limiting and degenerate four-wave mixing, are employed to study the nonlinear optical properties of various novel fullerenes structures. Optical limiting refers to decreased transmittance of a material with increased incident light intensity. Detailed measurements of the wavelength-dependence of fullerene optical limiters have illustrated several key features of reverse saturable absorption. Most important among these is the requirement of weak but non-negligible ground state absorption. We have shown that the optical limiting performance of C₆₀ can be extended into the near infrared range by appropriate modifications of the structure such as higher cage fullerenes or derivatization of the basic C₆₀ molecule. The higher cage fullerene C₇₆ shows improved optical limiting behavior compared to C₆₀, for wavelengths higher than 650 nm, but becomes a weak limiter in the 800 nm range. C₈₄, even at high concentrations in [alpha]-chloronaphthalene, does not reach the good performance of C₆₀, but instead shows weak optical limiting in the 800 nm range. We also demonstrate that by attaching various groups to the C₆₀ molecule, we can extend the optical limiting performance in the near infrared regime. The C₆₀ derivatives studied, (C₆₀ cyclic ketone, C₆₀ secondary amine, C₆₀CHC₆H₄CO₂H, and C₆₀C₄H₄(CH₃)CH₂O₂C(CH₂)CO₂H), have a similar characteristic: the attached groups cause a symmetry-breaking of the C₆₀ sphere and, therefore, there are new allowed transitions that appear as absorption features up to 750 nm. The optical limiting measurements show that these materials, even for low input energies, have an exceptionally strong optical limiting response in the 640 to 750 nm spectral region. For wavelengths higher than 800 nm, however, they become transparent and no optical limiting is observed. Excited state absorption cross-sections obtained from analysis of the optical limiting data reveal that the C₆₀ derivatives have a maximum triplet-triplet absorption cross-section at 700 nm, which is shifted from the 750 nm value for the C₆₀ molecule. For the first time, optical limiting measurements are performed on five separate C₈₄ isomers. These intriguing results show that the optical limiting behavior is strongly dependent on the cage symmetry. It is also found that the most abundant isomer does not have the strongest optical limiting performance, but is in fact one of the weaker optical limiters of the isomers isolated so far. The endohedral metallofullerenes are a unique class of fullerene materials and consist of one or more metal atoms encapsulated inside the buckyball cage. An important characteristic of these materials is the charge-transfer from the dopant atoms to the fullerene cage, which has a high electron affinity. The charge-transfer is similar to the optical excitation in a material, but although the electrons are placed in the lowest unoccupied molecular orbital (LUMO), there are no holes produced in the highest occupied molecular orbital (HOMO). This is an important analogy, since it has been previously shown that optical excitation enhances the nonlinear optical properties of a material. The nonresonant degenerate four-wave mixing experiments performed on the endohedral metallofullerene Er₂@C₈₂, at 1064 nm, show that the third order nonlinear susceptibility value is increased by orders of magnitude relative to the empty cage fullerenes, thus, confirming the charge-transfer process from the encapsulated atoms to the fullerene cage. We obtain a value [gamma]<sub>xyyx</sub><sup>(3)</sup>( &#173 [omega]; [omega], [omega], &#173 [omega])= &#173 8.65 &#215 10⁻³² esu for the molecular second order hyperpolarizability, which is almost three orders of magnitude larger than the values reported in literature for an empty cage fullerene. / Ph. D.
159

Nanostructures pour l'exaltation d'effets non linéaires / Nanostructures for nonlinear effects enhancement

Héron, Sébastien 18 November 2016 (has links)
Les sources infrarouges basées sur des effets d'optique du second ordre constituent de très bons outils de spectrométrie des polluants présents dans l'atmosphère, grâce notamment à leur grande accordabilité spectrale. Ils demandent toutefois une forte puissance lumineuse incidente et une grande quantité de matériau non linéaire pour être efficaces. On peut les rendre très compactes en réalisant la conversion de fréquence à l'aide de nanostructures plasmoniques contenant des inclusions diélectriques présentant une susceptibilité du deuxième ordre non nulle. La lumière y est très fortement concentrée à la résonance augmentant fortement la quantité de polarisation non linéaire produite, afin d'y exalter les effets d'optique non linéaire.Ce travail s'attaque d'abord à la conception de nano-résonateurs grâce au développement d'un outil de simulation d’empilements nanostructurés selon une dimension. Trois architectures sont étudiées : les nanorésonateurs de type sillon, les nanorésonateurs de Helmholtz et les guides d'ondes à résonances de modes guidés. Dans chaque cas, le dimensionnement passe par la détermination de géométries bi- voire tri-résonantes pour la réalisation d'accord de modes en génération de second harmonique ou de différence de fréquences.La fabrication en salle blanche des résonateurs sillons et guides d'ondes est ensuite exposée, suite à un important travail de développement technologique, qui a permis l’obtention d’échantillons de très bonne qualité. / Infrared sources based on second order effects are interesting tools for atmospheric pollutants spectrometry thanks to their wide tunability. Such effects nevertheless demand strong incident powers or massive non linear crystals to be efficient. A new way to reduce their size consists in realizing frequency conversion with the help of plasmonic nanostructures containing dielectric inclusions showing a non zero second order susceptibility. Light is greatly harvested and concentrated at resonance leading to the creation of a great quantity of non linear polarization, so as to further enhance non linear optics effects.This work begins with a study of nanoresonators through developing a simulation tool for one dimensional nanostructured multilayered structures. Three architectures are retained : slit nanoresonators, optical Helmholtz nanoresonators and waveguides based on guided mode resonances. In every case, the conception focuses on the finding of bi- and even of tri-resonant geometries to achieve mode matching for second harmonic of difference frequency generation.Clean room fabrication is then detailed step by step following the important works that have permitted the fabrication of samples showing a very good quality.
160

Studies of nonlinear optical properties of plasmonic nanostructures / Etude des propriétés optiques non linéaires de nanostructures plasmoniques / Badanie nieliniowych właściwości optycznych nanostruktur plazmonicznych

Kolkowski, Radoslaw 27 January 2016 (has links)
Le but de cette thèse et de la recherche associée est une démonstration des avantages d’une combinaison de propriétés inhabituelles de nanostructures plasmoniques avec des aspects parmi les plus intéressants de l’optique non-linéaire. Pour cet effet, la modélisation analytique et numérique a été combiné avec le travail expérimental, qui comprenait la production de nanostructures et les mesures effectuées au moyen de la microscopie confocale non-linéaire résolue en polarisations et de la technique Z-scan modifiée (nommée “f-scan”).Il a été montré que l’anisotropie efficace de génération de seconde-harmonique dans les cristaux plasmoniques (formés par des réseaux rectangulaires de cavités tétraédriques sur une surface d’argent) peut être contrôlée par un choix approprié des paramètres de maille. Il a aussi été montré que cette anisotropie provient principalement d’une structure de bande photonique elle-même anisotrope, présentant une bande interdite plasmonique avec des états plasmoniques en bord de bande, permettant de renforcer le champ électrique local. Les arrangements chiraux bidimensionnels de nanoparticules triangulaires d’or, forment des “meta-molécules” plasmoniques énantiomériques, ont été analysés par microscopie non-linéaire à la lumière polarisée circulairement et par modélisation numérique, révélant un fort effet chiroptique par génération de seconde harmonique en rétro-réflexion. La petite taille des énantiomères uniques permet de créer “des filigranes” (“watermarks”) codés par la chiralité des meta-molécules, qui peuvent être lu par imagerie de la génération de seconde harmonique excitée par un rayon polarisé circulairement. Les caractéristiques quantitatives de la non-linéarité optique du troisième ordre et de l’efficacité d’absorption saturable des solutions aqueuses de fragments de graphène et de graphène dopé par des nanoparticules d’or a été effectuée par une nouvelle technique “f-scan”, qui a été créée et développée par incorporation d’une lentille à distance focale accordable dans une technique de Z-scan traditionnelle. Ces études ont montrées que le graphène présente une absorption saturable ultra-rapide très efficace, qui est parfois convertie en absorption saturable inverse. Il apparaît alors qu’une décoration du graphène par des nanoparticules d’or peut causer une légère amélioration du paramètre d’efficacité d’absorption saturable dans la plage spectrale de leurs résonances plasmoniques. En résumé, cette thèse présente une variété de propriétés optiques non-linéaires apparaissant dans les nanostructures plasmoniques. Différentes possibilités de contrôle de ces propriétés au moyen d’une démarche de nano-ingénierie, soutenue par des modélisations à la fois analytique et numérique ont été démontrées et analysées. Ces travaux ouvrent la voie à la fabrication et à l‘optimisation sur mesure de nouveaux nano-matériaux et nano-dispositifs photoniques reposant sur des effets de nano-plasmonique non-linéaire. / The aim of this thesis and the underlying research work is to demonstrate the benefits emerging from combination of the peculiar properties of plasmonic nanostructures with the most interesting aspects of nonlinear optics. For this purpose, analytical and numerical modeling was combined with experimental work, which included nanofabrication and measurements performed by means of polarization-resolved nonlinear confocal microscopy and by modified Z-scan technique (called "f-scan").It has been shown that the effective anisotropy of the second-harmonic generation in plasmonic crystals (formed by rectangular arrays of tetrahedral recesses in silver surface) can be controlled by proper choice of lattice constants. It also has been shown that this anisotropy arises mainly from the anisotropic photonic band structure, exhibiting plasmonic band gap with plasmonic band edge states, enabling enhancement of the local electric field.Two-dimensional chiral arrangements of triangular gold nanoparticles, forming plasmonic enantiomeric "meta-molecules", have been studied by nonlinear microscopy operating with circularly polarized light and by numerical modeling, revealing strong chiroptical effect in backscattered second-harmonic radiation. Small size of individual enantiomers allows to create "watermarks", encoded by the chirality of meta-molecules, which can be readout by imaging of second-harmonic generation excited by circularly polarized laser beam.Quantitative characterization of the third-order optical nonlinearity and saturable absorption efficiency of aqueous solutions of graphene and gold-nanoparticle decorated graphene has been performed by novel "f-scan" technique, which has been created and developed by incorporation of a focus-tunable lens into traditional Z-scan. These studies have shown that the graphene exhibits very efficient ultrafast saturable absorption, which is occasionally suppressed by reverse saturable absorption. Moreover, it turns out that decoration of graphene by gold nanoparticles may cause a slight improvement of the saturable absorption efficiency parameter within spectral range of their plasmon resonances.In summary, the following thesis presents various nonlinear optical properties of plasmonic nanostructures. Different possibilities of controlling these properties by means of nano-engineering, supported by analytical and numerical modeling, is also analyzed and demonstrated. This work opens up new perspectives for fabrication and rational design of novel photonic nano-materials and nano-devices based on nonlinear nanoplasmonic phenomena.

Page generated in 0.3514 seconds