• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 96
  • 72
  • 38
  • 16
  • 11
  • 7
  • 6
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 637
  • 637
  • 176
  • 109
  • 105
  • 103
  • 97
  • 97
  • 89
  • 79
  • 76
  • 73
  • 73
  • 70
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Nonlinear and Ultrafast Optical Probing of Nanoscale MnAs and Graphitic Films

Dean, Jesse Jackson 07 August 2013 (has links)
This thesis reports on ultrafast linear and nonlinear optical probing of nanometer thick films. Exfoliated graphene and few-layer graphite are probed through optical second harmonic generation (SHG) with 800 nm, 150 fs pulses. Samples of varying thickness from 1 carbon layer to bulk graphite are deposited onto an oxidized silicon substrate. SHG measurements are taken as a function of azimuthal rotation angle of the films. It is found that the SHG from graphene is much weaker than that from bilayer graphene, and has a qualitatively different azimuthal pattern. As the sample thickness increases from bilayer graphene to bulk graphite, the SHG yield generally decreases. Both of these effects are explained in terms of the symmetry of graphene and graphite, and modeled using multilayer optical transfer matrices, and an identical set of nonlinear susceptibility tensor elements for the front and back surfaces. These tensors are independent of sample thickness. MnAs films of 150 and 190 nm thickness on (001)GaAs are optically excited with 775 nm, 200 fs pump pulses. Specular SHG at 388 nm and first order optical diffraction at ∼ 400 nm are used to probe the samples on timescales up to 2 μs. It is found that the SHG probes the temperature-dependent, spatially averaged, surface strain. This strain reaches a maximum deviation in ∼ 6–100 ps after optical excitation depending on the pump fluence and initial temperature. The strain then recovers in hundreds of picoseconds, a timescale consistent with heat diffusion. The optical diffraction probes the first Fourier component of the paramagnetic–ferromagnetic stripes inherent to MnAs films in the 10–40◦C temperature range. After optical excitation, the diffraction data show highly nonthermal behaviour in the MnAs films. If a sample is excited from the coexistence phase, the diffraction signal shows decaying oscillations with a period of ∼ 335±4 (408±4) ps for the 150 (190) nm films; this is consistent with the release of a standing acoustic wave. Decay occurs on a timescale of ∼ 2 ns consistent with local diffusion through the films. The stripes are restored on a timescale of hundreds of nanoseconds, with a temporal behavior consistent with a diffusion process, possibly thermal in origin.
62

Many-body theory of dissipative quantum optical systems

Mertens, Christopher J. 12 1900 (has links)
No description available.
63

The Design and Construction of a Second Harmonic Generation Microscope For Collagen Imaging

Au, Ivy Win Long January 2013 (has links)
In recent years, second harmonic generation (SHG) microscopy has revolutionised the field of biological imaging by offering a new means of visualising the fine structures of collagen tissues with excellent image penetration while minimising photodamage. This project involves the design and construction of a SHG microscope that is built around a compact femtosecond fibre laser for collagen imaging. Operating at 1032 nm, the microscope has demonstrated a penetration depth of beyond 320 microns in collagen, which is considerably superior to depths of 250 to 300 microns achievable with a conventional SHG microscope coupled to a Ti:sapphire excitation laser. The imaging characteristics of the microscope have been tested with a modified sample of bovine pericardium. The results indicate the microscope is polarisation-sensitive to the tissue structure and is capable to detecting signal changes at 10 μm resolution. This thesis will describe in detail, to our best knowledge, the first SHG microscope equipped with a compact and robust all-fibre femtosecond 1032 nm laser source.
64

Theory and design of nonlinear metamaterials

Rose, Alec Daniel January 2013 (has links)
<p>If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers and oscillators. By applying this set of tools and knowledge to microwave metamaterials, I experimentally confirm several novel nonlinear phenomena. Most notably, I construct a backward wave nonlinear medium from varactor-loaded split ring resonators loaded in a rectangular waveguide, capable of generating second-harmonic opposite to conventional nonlinear materials with a conversion efficiency as high as 1.5\%. In addition, I confirm nonlinear magnetoelectric coupling in two dual gap varactor-loaded split ring resonator metamaterials through measurement of the amplitude and phase of the second-harmonic generated in the forward and backward directions from a thin slab. I then use the presence of simultaneous nonlinearities in such metamaterials to observe nonlinear interference, manifest as unidirectional difference frequency generation with contrasts of 6 and 12 dB in the forward and backward directions, respectively. Finally, I apply these principles and intuition to several plasmonic platforms with the goal of achieving similar enhancements and configurations at optical frequencies. Using the example of fluorescence enhancement in optical patch antennas, I develop a semi-classical numerical model for the calculation of field-induced enhancements to both excitation and spontaneous emission rates of an embedded fluorophore, showing qualitative agreement with experimental results, with enhancement factors of more than 30,000. Throughout these series of works, I emphasize the indispensability of effective design and retrieval tools in understanding and optimizing both metamaterials and plasmonic systems. Ultimately, when weighed against the disadvantages in fabrication and optical losses, the results presented here provide a context for the application of nonlinear metamaterials within three distinct areas where a competitive advantage over conventional materials might be obtained: fundamental science demonstrations, linear and nonlinear anisotropy engineering, and extremely compact resonant all-optical devices.</p> / Dissertation
65

Ultrafast four-wave-mixing in wide-bandgap II-VI semiconductors

Tookey, Andrew January 1998 (has links)
No description available.
66

Directing the self-assembly and click chemistry of organic photonics materials for exceptional electro-optic properties /

Kim, Tae-Dong, January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 111-116).
67

Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials /

Gray, Tomoko O. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (p. 110-118).
68

Molecular and nanoscale engineering for enhanced order in organic electro-optic materials /

Hammond, Scott R. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 288-308).
69

Development of zwitterionic nonlinear optical polyimides for electro-optic applications /

Song, Naiheng, January 1900 (has links)
Thesis (Ph. D.)--Carleton University, 2004. / Includes bibliographical references. Also available in electronic format on the Internet.
70

External cavity diode lasers and non-linear optical frequency conversion in spectroscopic applications /

Shah, Anjali. January 2006 (has links)
Thesis (Ph.D.) - University of St Andrews, November 2006.

Page generated in 0.1162 seconds