• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 465
  • 343
  • 124
  • 44
  • 37
  • 27
  • 11
  • 9
  • 8
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 1199
  • 1199
  • 432
  • 395
  • 383
  • 227
  • 219
  • 180
  • 144
  • 142
  • 132
  • 123
  • 98
  • 93
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

The use of stable carbon and oxygen isotopes to examine the fate of dissolved organic matter in two small, oligotrophic Canadian Shield lakes.

Chomicki, Krista January 2009 (has links)
Allochthonous carbon can be a large proportion of the carbon budget in northern temperate and boreal lakes. This thesis uses stable carbon and oxygen isotopes to examine the fate of allochthonous dissolved organic matter (DOM) in northern temperate lakes, and to determine the importance of dissolved organic carbon (DOC) in lake carbon mass balances and in the δ¹³C of lake sediments. To use stable isotopes as a tool for studying DOC loss and sedimentation within lakes requires an understanding of processes that affect the δ¹³C and δ¹⁸O in aquatic systems. Photolysis is one mechanism that can account for the large allochthonous DOC loss within northern temperate lakes. There is, however, little research examining the effects of photolysis on stable isotopes (e.g. δ¹³C and δ¹⁸O) in aquatic systems, or how photodegradation of DOM affects the δ¹³C of lake sediments. To study the effects of DOM photodegradation on carbon and oxygen isotopes, stream waters from catchments with varying peatland coverage were incubated in Tedlar bags placed in water baths under natural sunlight. Results from three streams flowing into two oligotrophic headwater lakes (Harp and Dickie Lakes) indicate that O₂ consumption rates and dissolved inorganic carbon (DIC) production rates were an order of magnitude greater in light exposed treatments than in dark treatments, suggesting that light mediated processes control O₂ consumption and DIC production in incubations. The similarity between filtered, inoculated, and sterile treatments, indicate that photolysis was the dominant O₂ consuming and DIC producing process in the incubations, while the contribution of respiration to these processes was not detectable. Differences in both O₂ consumption rates and DIC production rates (normalized to DOC loss) among streams suggest that DOM photolability was an important factor in both O₂ loss and DIC production on a volumetric basis. A concomitant increase in δ¹⁸O-O₂ was observed with O₂ loss indicating that during the photo-oxidation of DOM, the lighter ¹⁶O isotopomer was preferentially consumed in the oxidation of DOC to CO₂. Fractionation factors for respiration, photolysis and other abiotic reactions were not a function of O₂ consumption rates and ranged between 0.988 and 0.995, which lies outside the range published for respiration (0.975-0.982). These are the first published photolytic fractionation factors. The δ¹³C-DIC produced collectively by photolysis, respiration, and other abiotic reactions in incubations exposed to natural sunlight ranged between –23‰ and –31‰, and were similar in the light incubations for each treatment, but different among streams. Together, the light and dark incubation data suggest that photolysis and other abiotic reactions were largely responsible for the DIC concentration and δ¹³C-DIC changes observed, while respiration is a relatively minor contributor. During the incubations, as DOC photodegraded to CO₂, the lighter ¹²C isotope was preferentially mineralized (or the moieties cleaved were depleted in ¹³C) leaving the residual δ¹³C-DOC 1‰ to 4‰ enriched, creating enrichment (ε) values up to ~–3‰. The change in final δ¹³C-DOC after DOM photodegradation was different for each inflow, ranging from ~1 ‰ to 8.0 ‰, and provides an average enrichment of –2.1‰ (Harp Inflows ε: –1.2‰; Dickie Inflows ε: –3.4‰). These ε values are in agreement with the average ε from previous incubations on 3 of the inflows and 3 published studies based on UV exposed bog water (Osburn et al., 2001), riverine waters (Opsahl and Zepp, 2001), and lyophilized Juncus leachate dissolved in lake water (Vähätalo and Wetzel, 2008) (average ε = –2.9‰). The structure of DOM changed during photolysis. Absorbance data indicated that the aromaticity, colour, UV absorption and the average molecular size of the DOC decreased. Additionally, after exposure to sunlight, C/N ratios of the DOC changed from high values (24-55), indicative of terrestrial inputs, to lower values (4-13) traditionally thought to be representative of algal or microbial inputs. This contradicts the conventional view that terrestrial DOC has C/N ratios >20, and shows that abiotic processes can alter allochthonous carbon structure and the residual allochthonous carbon can have C/N values similar to, or overlapping with, C/N ratios expected from algal or microbial carbon. With the loss of 61-90% of the DOC, the particulate organic carbon (POC) created accounted for 20-90% of the DOC lost. Values of δ¹³C-POC ranged from –25.7‰ to –27.7‰, with 80% of the samples within 1‰ of the initial δ¹³C-DOC indicating that the particulate carbon created from the photodegradation of DOM that settles to the lake sediments could be isotopically similar to the source DOC. Overall, these incubations indicate that the photodegradation of DOM can affect both concentrations and isotopes of O₂, DIC, DOC, and POC of the stream waters flowing into Harp and Dickie Lakes and are important to consider in lake dynamics of high DOC retention lakes. Two independent methods were used to examine the importance of allochthonous DOC to lake sediments. The first method used a two end-member mixing model to estimate the proportion of allochthonous and autochthonous carbon within the lake sediments. Inflow δ¹³C-POC data, δ¹³C-leaf litter measurements, and DOC photodegradation experiments were used to calculate average annual δ¹³C-POC values for the allochthonous end member. The average annual δ¹³C-POC values for the autochthonous end member were calculated using estimates of productivity, surface δ¹³C-CO₂ values and estimated average annual fractionation factors. Average annual δ¹³C-POC values from allochthonous and autochthonous sources for these lakes were distinct. Using the end members to calculate the relative contributions of allochthonous and autochthonous carbon to lake sediments revealed that the δ¹³C of the lake sediment can be significantly affected by the ratio of autochthonous and allochthonous contributions. Furthermore, peaks in the allochthonous contributions of carbon accompany the δ¹³C peaks in the sediment records to the lake sediments. This suggests that climate change and/or anthropogenic changes to the landscape, and the concomitant changes in DOC inputs to lakes, can be recorded in the sediment record indicating that sediment records are not just productivity signals, but also mass balance signals in high DOC retention lakes. In the second method carbon isotope budgets were completed to accompany the carbon mass budgets for Harp and Dickie Lakes. Mass-weighted average annual δ¹³C-DOC values from the inflows and outflows and δ¹³C-DIC values from the inflows varied by 0.2‰ to 1.3‰, suggesting the values are well constrained. Conversely, the range of weighted δ¹³C-DIC values from the outflows were larger (2.2‰) than those of the inflows. Calculated δ¹³C values of the lake sediment were not equal to the measured δ13C values of the lake sediments for either Harp or Dickie Lakes suggesting a problem lies within the mass balances, or the weighted average annual δ¹³C values used in the isotope budgets. To examine the sensitivity of the average annual weighted δ¹³C values for the carbon entering and exiting the lakes, and the mass of carbon entering the lakes δ¹³C of the lake sediments, a mass and isotope budget model was created. The model indicated that the δ¹³C of the lake sediments is sensitive to a number of parameters including the amount of DOC entering the lake, the δ13C-CO2 evaded from the lake, the areal water discharge rate (qs), the gas exchange coefficient (k), and pH. Many of these parameters required adjustments for the masses of carbon to match those presented in the mass balances suggesting that the mass balances averaged over 8 years have errors associated with them. However, changing the DOC load to the lakes in the model by the variability observed over all the years of the mass balances) indicates that the isotopic signature of the lake sediment could change by up to 2.5‰. This isotope change is large enough to account for the historical δ¹³C changes observed in the δ¹³C sediment record, suggesting that allochthonous DOC can drive the sediment record.
222

The Effect of Afforestation on Soil Microbes and Biogeochemistry across Multiple Scales

Berthrong, Sean Toshio January 2009 (has links)
<p>Afforestation, the conversion of historically treeless areas into forests, is a rapidly spreading land-use change with the potential to sequester carbon. Afforested plantations typically feature fast growing exotic tree species that give landowners rapid returns. The efficient growth of plantations compared to less intensively managed forests also can provide greater timber yields in a smaller area. This increased efficiency in turn could require fewer acres to meet global forest product demands and could also reduce the need to log intact primary forests. Reduced primary forest harvest and high primary productivity make afforestation a highly efficient carbon sequestration tool.</p><p> However, the rapid growth and planting disturbance due to afforestation can have deleterious effects on soils and hydrology that undermine its benefits in some locations. The effects on hydrology include depletion of groundwater and reduced or complete elimination of surface water flow. Additionally, groundwater use can lead to increased concentrations of salts and trace metals in soil that could be deleterious for future plant productivity. Plantations have also been shown to acidify surface soils and stream water and to reduce soil carbon and nitrogen.</p><p> Despite the known effects of afforestation on soils, there has been little research on the mechanisms controlling these effects. For instance, there have been few studies on the effects of afforestation on soil microbes which mediate most biogeochemical processes. There is also little knowledge on what controls the effects of afforestation on soil carbon and nitrogen, vital indexes of soil quality, across regions with high levels of afforestation. The overarching goal of this dissertation is to examine the effects of afforestation on soils, microbes, and biogeochemical processes across local, regional and global scales. Understanding the mechanisms by which afforestation alters soils and biogeochemical cycling and how these mechanisms change across different scales will aid in evaluating the true costs and benefits of afforestation. These results will be useful in determining if the benefits of afforestation will continue to outweigh its costs in the long-term.</p><p> The goal of Chapter 1 is to evaluate how afforestation across the globe affects mineral soil quality, including pH, sodium, exchangeable cations, organic carbon, and nitrogen, and to examine the magnitude of these changes in regions where afforestation rates are high. To control for different initial soil conditions across the globe, I examined paired sites of afforested plantations and controls. Controls included land-use types that are frequently afforested, such as grasslands, shrublands, and pastures. I also examined potential mechanisms to reduce the impacts of afforestation on soils and to maintain long-term productivity. Across diverse plantation types (153 sites) to a depth of 30cm of mineral soil, I observed significant decreases in nutrient cations (Ca, K, Mg), increases in sodium (Na), or both with afforestation. For the global dataset, afforestation reduced soil concentrations of the macronutrient Ca by 29% on average compared with native controls (p<0.05). Afforestation by Pinus alone decreased soil K by 23% (p<0.05). Overall, plantations of all genera also led to an average 71% increase of soil Na (p<0.05). Average pH decreased 0.3 units (p<0.05) with afforestation. Afforestation caused a 6.7% and 15% (p<0.05) decrease in soil C and N content respectively, though the effect was driven principally by Pinus plantations (15% and 20% decrease, p<0.05). Carbon to nitrogen ratios in soils under plantations were 5.7-11.6% higher (p<0.05). The major implication of these results are that in several regions with high rates of afforestation, cumulative losses of C, N, Ca, and Mg are likely in the range of tens of millions of metric tons. The decreases indicate that trees take up considerable amounts of nutrients from soils; harvesting this biomass repeatedly could impair long-term soil fertility and productivity in some locations. Based on this study and a review of other literature, I suggest that proper site preparation and sustainable harvest practices, such as avoiding the removal or burning of harvest residue, could minimize the impact of afforestation on soils. These sustainable practices could in turn slow erosion, organic matter loss, and soil compaction from harvesting equipment, maintaining soil fertility to the greatest extent possible. </p><p> Soil microbes are highly diverse and control most soil biogeochemical reactions. Given the observed changes in Chapter 1, in Chapters 2 and 3 I examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying afforestation. I examined paired native grasslands and adjacent Eucalyptus plantations (previously grasslands) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, I analyzed functional genes using the GeoChip 2.0 microarray that simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grasslands differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Afforestation decreased both bacterial diversity and richness compared to grasslands, though diversity remained relatively high. Most grassland functional gene profiles were similar, but plantation profiles generally differed from grasslands due to differences in functional gene abundance across many microbial groups. Eucalypts decreased ammonification and N-fixation functional genes by 11% and 7.9% (p<0.01) which correlated with decreased microbial biomass N and more NH4+ in plantation soils. Chitinase, an important carbon polymer degrading enzyme, decreased in functional gene abundance 7.8% in plantations compared to grasslands (p=0.017), and C polymer degrading genes decreased by 1.5% overall (p<0.05), which likely contributed to 54% (p<0.05) more C in undecomposed extractable soil pools and 27% less microbial C (p<0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes corresponding with changes in soil biogeochemistry. These changes were driven by shifts in the whole community functional gene profile, not just one or two constituent microbial taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.</p><p> The area studied in Chapters 2 and 3 lies near the middle of a precipitation gradient that stretches across the Rio de la Plata grasslands. In Chapter 4 I studied if the effects of afforestation on soil C and N from Chapters 2 and 3 varied with different precipitation levels. The effect of afforestation on soil C has been shown to depend on mean annual precipitation (MAP), with drier sites gaining C and wetter sites losing C with afforestation. This precipitation dependence of soil C changes with afforestation may be controlled by changes in soil nitrogen (N) cycling. In particular, loss of N due to leaching after afforestation could lead to soil C losses. However, the link between C and N changes due to afforestation has primarily been suggested by models and to my knowledge has never been explicitly tested across a precipitation gradient. The goal of this study was to test how precipitation affects changes in labile and bulk pools of soil C and N across a precipitation gradient, which will provide novel insight into the linkage between land-use change, different pools of soil C and N, and precipitation. I conducted this study across a gradient of precipitation in the Rio de la Plata grasslands of Argentina and Uruguay which ranged from 600mm to 1500mm of precipitation per year. The sites were all former grasslands that had been planted with Eucalyptus. I found that changes in bulk soil C and N were related to MAP with drier sites gaining and wetter sites losing C and N (R2=0.59, p=0.003), which supports the idea that N losses are strongly linked to C losses with afforestation. C and N in microbial biomass and extractable pools followed similar patterns to bulk soil C and N. Interestingly, losses of C and N decreased as the plantations aged, suggesting that longer rotation times for plantations could reduce potential soil carbon and nitrogen losses. These results indicate that afforestation is still be a valuable tool for carbon sequestration, but calculations of the benefits of afforestation must take into account site factors such as age and precipitation to accurately calculate total sequestration benefit and ensure continued high productivity and carbon sequestration.</p><p> In conclusion, afforestation could be an effective tool for carbon sequestration. However, its benefits need to be carefully weighed against its costs for soil such as reduced microbial diversity, decreased soil microbial functional capacity, losses of soil organic matter, and nutrient depletion. Careful management and consideration of afforestation is needed to ensure the greatest benefits with the least long-term damage to soils.</p> / Dissertation
223

Analysis of Aliphatic Hydrocarbons in the Sediments and Soils of Gaoping River-sea System

Hsu, Hui-Lan 30 August 2011 (has links)
The Gaoping (GP) river which has the largest drainage basin and is the second longest river in Taiwan. Highly erodible sedimentary and metamorphic rocks in the drainage basin, coupled with a steep landscape, humid climate, frequent typhoons and earthquakes, provide favorable conditions for bedrock weathering and soil erosion in the GP drainage basin. Its exceptionally high sediment yield and tidal-dominated dispersal system presents a unique case for comparative study. In this study, we collected sediment and soil samples not only from estuary region but also traced up to upper stream areas of the GP drainage. We analyze the content of n-alkanes in the sediments and soils of GP river-sea system, and utilize compositional patterns to discuss the sources and process of transmission of terrigenous organic matter of GP river-sea system. Analyzed results show that the average carbon chain distribution shows same pattern for rocks, riverine and seafloor sediments but is different with soil samples. Hierarchical cluster analysis helps us to distinguish differently compositional patterns of n-alkanes. And the riverine, seafloor and rock samples have high similarity, except for soils. The spatial distribution of the carbon preference index (CPI) and temporal distribution of CPI in cores, show that values are all close to ~1, but not for soils (>2). This result indicates that for the past 150 years, lower CPI values not merely from petroleum pollutions, but also due to thermal mature terrestrial organic matter eroded from bedrock caused by tectonic and climatic events, such as typhoons and earthquakes.
224

A study of benthic invertebrate community and environmental factors of salty artifical wetlands

Dai, Li 07 September 2011 (has links)
The objectives of this study are to investigate the biodiversity in different unit of treatment systems, and to detect the function in a salt water type of constructed wetland. We investigated the benthic invertebrate community in different stage from 2010 July to 2011 May, while the parameters of TKN, NH3-N, organic nitrogen, TP, TOC and particle size were measured in the sediments of each sampling site at the same time in the wetland system. The results show that concentrations of organic matter and nutrients in the sediments were increased with time monthly. In May of 2010, the concentration of NH3-N were found the highest one(ANOVA, p<0.05). The particle size in sampling site 1 were the highest (ANOVA, p<0.05), while in November of 2010 all sampling sites were found exhibiting significantly different with other months (ANOVA, p<0.05). Further more, for the diversity of benthic invertebrate, we found that the parameter of the temperature was strongly negatively related to the species diversity, species abundance and species evenness, respectively (r=-387[H¡¦]¡F-533[d]¡F-438[J¡¦] ). The species diversity was increased with organic nitrogen concentrations in the sediments (r=0.492[TKN]¡F0.408[NH3-N]¡F0.493[org-N]), and were negatively related to the parameters of DO and particle size(r=-0.402[Particle size]¡F-0.287[DO] ). In addition, PCA shows that the parameters of particle size¡Borg-N¡BNH3-N¡BTKN and TOC were all important factors. Generally, it was concluded that the constructed systems, which is functioned of wetland was wastewater treatment mainly, exhibit no significant function in biodiversity.
225

Burial and decomposition of particulate organic matter in a temperate, siliciclastic, seasonal wetland

Welsh, Lisa Williamson 15 May 2009 (has links)
Understanding the role of freshwater wetlands in the global carbon cycle has become more important as evidence of climate change grows. In this paper, we examine the burial and decomposition of particulate organic matter (POM) in a temperate, siliciclastic, seasonal wetland. High POM abundances are found in silt layers, while sand units preserve very little POM. The POM distribution with depth is compared to the biogeochemistry of sediment porewater with depth. POM acts as a driver for reduction reactions within the wetland soil. Porewater biogeochemistry and POM decomposition are controlled by seasonal changes in the level of the water table which cause seasonal shifts in the oxic/anoxic boundary. At the oxic/anoxic boundary, reoxidation of FeS minerals in the soil cause rapid POM decomposition at the average minimum water table level in the late summer and early fall. Variation in the minimum depth of the water table from year to year may account for fluctuating POM numbers in the upper silt layers. The results from this study can be used to predict seasonal water level fluctuations in ancient wetland and to explain recurrence horizons in peat.
226

Multi-Proxy Approach on Black Carbon Characterization and Combustion Products Source Discrimination in Environmental Media

Kuo, Li-Jung 2009 December 1900 (has links)
Environmental applications of pyrogenic carbon, aka black carbon (BC), have been hampered due to the poor characterization and quantification of environmental BC. This dissertation was dedicated to the better characterization of environmental char/charcoal BC (char-BC), the most heterogeneous and the less identifiable group in the BC continuum. The analytical approach developed for char-BC was further incorporated with other BC methods in environmental samples for a comprehensive assessment of combustion-derived carbon inputs in different environmental systems. The present study firstly evaluated the feasibility of using levoglucosan, a marker derived from cellulose/hemocellulose combustion, to characterize and quantify char-BC in the environment. Levoglucosan was found exclusively in BC materials derived from biomass combustion albeit in highly variable yields across different char-BC. A further examination of synthetic chars showed that temperature is the most influential factor affecting levoglucosan yield in char. Notably, levoglucosan was only detectable in low temperature char samples (150-350 degrees C), regardless of plant species. These results demonstrated that levoglucosan could serve as a good qualitative indicator for the presence of char produced under low temperature conditions in soil, sediments, and aerosols. Results of lignin analysis on the synthetic chars further reveal that combustion can greatly decrease the yield of the eight major lignin phenols with no lignin phenols detected in any synthetic char produced at greater than or equal to 400 degrees C. The values of all lignin parameters show significant shifts with increasing combustion severity (temperature and/or duration), indicating that thermal alteration is an important abiotic lignin degradation process. Hence the input of char-BC in the environments represents a terrestrial organic matter source with highly altered lignin signatures. Finally, a multi-proxy approach, including elemental (soot-BC) and molecular (levoglucosan, polycyclic aromatic hydrocarbons (PAHs), and lignin oxidation products) proxies, was adopted to investigate the centennial-scale temporal distribution of combustion products in four sediment cores from Puget Sound basins, WA. The observed temporal trends of soot-BC and combustion PAHs fluxes reflect the evolution of energy consumption and the positive effects of environmental regulations. The distinct temporal patterns of soot and PAHs among cores demonstrate that urbanization is a crucial factor controlling the inputs of combustion byproducts to the environment. On the other hand, the trends of levoglucosan may be more relevant to the climate oscillation and thus show a regional distribution pattern. Our results demonstrate that environmental loading of combustion byproducts is a complex function of urbanization and land use, fuel usage, combustion technology, environmental policies, and climate changes.
227

Natural Organic Matter (NOM) in Aquatic Systems: Interactions with Radionuclides (234Th (IV), 129 I) and Biofilms

Zhang, Saijin 2010 August 1900 (has links)
A series of laboratory and field investigations were carried out to elucidate the importance of natural organic matter in aquatic systems, i.e., trace element scavenging (e.g., 234Th) by exopolymeric substances (EPS), formation of biofilms, as well as interactions with 129I. A method involving cross flow ultrafiltration, followed by a three-step cartridge soaking and stirred-cell diafiltration, was developed for isolating EPS from phytoplankton cultures, especially in seawater media. EPS isolated from a marine diatom, Amphora sp. was then subjected to semi-quantitative (e.g., carbohydrate, proteins) and quantitative analysis (e.g., neutral sugars, acidic sugars, sulfate). It appeared that Th (IV) binding by EPS was dominated by the acidic polysaccharides of fraction. For EPS of biofilms collected from polluted streams, hydrophobic proteins were the most abundant components in EPS, followed by more hydrophilic carbohydrates. However, chemical composition of carbohydrates or proteins, i.e., monosaccharides and amino acids, respectively, varied with environmental conditions and substrata applied, which suggests that the formation of biofilms on different substrates is regulated by specific properties of microorganisms, environmental conditions and nature of substratum. No correlation between relative hydrophobicity of substratum and development of biofilm was found in this study. A sensitive and rapid GC-MS method was developed to enable the determination of isotopic ratios (129I/127I) of speciated iodine in natural waters. At the F-area of the Savannah River Site (SRS), iodine species in the groundwater consisted of 48.8 percent iodide, 27.3 percent iodate and 23.9 percent organo-iodine. Each of these iodine species exhibited vastly different transport behavior in the column experiments using surface soil from the SRS. Results demonstrated that mobility of iodine species depended greatly on the iodine concentration, mostly due to the limited sorptive capacity for anions of the soil. EPS, especially enzymes (e.g., haloperoxidases) could facilitate the incorporation of iodide to natural organic carbon. At high input concentrations of iodate (78.7 μM), iodate was found to be completely reduced and subsequently followed the transport behavior of iodide. The marked reduction of iodate was probably associated with natural organic carbon and facilitated by bacteria, besides inorganic reductants (e.g., Fe2 ) in sediments and pore water.
228

Removal of natural organic matter by enhanced coagulation in Nicaragua

García, Indiana January 2005 (has links)
<p>The existence of trihalomethanes (THMs) in a drinking water plant of Nicaragua has been investigated in order to see whether the concentration exceeded the maximum contaminant level recommended by the environmental protection agency of the United States (USEPA) and the Nicaragua guidelines. The influence of pH, temperature, chlorine dose and contact time on the formation of THMs were studied. The contents of organic matter measured by surrogate parameters such as total organic carbon, dissolved organic carbon, ultraviolet absorbance and specific ultraviolet absorbance were also determined in order to show which type of organic matter is most reactive with chlorine to form THMs. Models developed by other researchers to predict the formation of trihalomethanes were tested to see whether they can be used to estimate the trihalomethane concentration. In addition, empirical models were development to predict the THM concentration of the drinking water plant analysed. The raw water was treated by conventional and enhanced coagulation and these processes were compared with regard to the removal of natural organic matter (NOM). The significance of the results was assessed using statistic procedures.</p><p>The average concentration of THMs found at the facility is below the USEPA and Nicaragua guideline values. Nevertheless the maximum contaminant level set by USEPA is sometimes exceeded in the rainy season when the raw water is rich in humic substances. Comparison between the water treated by conventional and enhanced coagulation shows that enhanced coagulation considerably diminished the trihalomethane formation and the value after enhanced coagulation never exceeded the guidelines. This is because enhanced coagulation considerably decreases the organic matter due to the high coagulant dose applied. The study of the trihalomethane formation when varying pH, time, temperature and chlorine dose using water treated by conventional and enhanced coagulation showed that higher doses of chlorine, higher pH, higher temperature and a longer time increases the formation of THMs. However, combinations of two and three factors are the opposite. The predicted THM formation equations cannot be used for the water at this facility, since the results shown that the measured THM differs significantly from the THM concentration predicted. Two empirical models were developed from the data for enhanced coagulation, using linear and non-linear regression. These models were tested using the database obtained with conventional coagulation. The non-linear model was shown to be able to predict the formation of THMs in the Boaco drinking water plant.</p>
229

Effekten på nedbrytningen av rötter vid tillförsel av ammonium sulfat i en granskog i sydvästra Sverige / Effect of ammonium sulphate addition on root decomposition in a Norway spruce stand in south-west Sweden

Gustafsson, Therése January 2002 (has links)
<p>Decomposition of organic matter is a critical process in the ecosystem, which involves many essential biotic and physical parts. Decomposition is therefore an important process both above and below ground. The rate of decomposition is dependent of many environmental factors for example: pH, moisture and supply of oxygen. The decomposition can therefore be affected by large scaled environmental influences, such as acidification and climatic changes. The root litter in the forest is in different ways affected by acidification, liming and manuering. Because of the important role the root system has to the whole forest ecosystem, it can be of importance to gain knowledge about how roots are affected by external environmental influences. </p><p>In the forest ecosystem fertilise the soil has become a common practice in forest management to optimise tree production. Experiments with nitrogen fertilisation have shown that the volume growths of the tree and litter supply have increased after fertilisation. There are also reports about the negative effects nitrogen fertilisation has on decomposition, which results in a decreased decomposition of organic matter. </p><p>The aim of this study is to investigate how the decomposition of organic matter, in this case roots, is affected by a large addition of ammonium sulphate. The study concentrates on to statistically evaluate important aspects on how addition of ammonium sulphate affects the decomposition of organic matter below ground in different soil layers and root diameters, and investigate the possibilities that addition of ammonium sulphate could lead to a decreasing potential of carbon mineralisation. </p><p>The study was conducted is in Skogaby, which is located in southwest Sweden in the community of Halland. Samplings of roots were made in the experimental area from the humus and mineral layer. Roots used for this study varied from less than 2mm up to 2-5mm. Decomposition of root litters were made with litterbags, which were placed in the soil in the humus and mineral layer in the original place of were the roots were collected. The results from this study showed that there appear significant differences in some of the cases between the control and ammonium sulphate treatments. The conclusion that can be drawn by this study is that the addition of ammonium sulphate, under certain conditions depending on root diameter and soil layer, comes to affect the decomposition of root litter. The addition of ammonium sulphate seems to have a positive effect on the decomposition in the initial phase, for then come to decrease in the later phases and be similar to the control areas. It can also be determined that decomposition does not seem to vary within treatments with regards to root diameter and soil layer. Regarding the question about how carbon mineralisation is affected by addition of ammonium sulphate it is probable that the addition would come to increase the mineralisation in the initial phases of the decomposition, compared with the control plots.</p>
230

Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

Nihemaiti, Maolida 05 1900 (has links)
Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the chloramination of aromatic compounds (i.e., phenol and resorcinol) indicating that N-DBPs can also be formed from organic compounds without any organic nitrogen through the incorporation of inorganic nitrogen from monochloramine. Moreover, results from Hymenomonas sp., aromatic amino acids, and phenolic compounds suggested that aromatic compounds are highly reactive with monochloramine and a major fraction of DBP precursors.

Page generated in 0.0595 seconds