Spelling suggestions: "subject:"[een] PARTIAL LEAST SQUARES"" "subject:"[enn] PARTIAL LEAST SQUARES""
61 |
DETERMINACIÓN DE COMUNIDADES FITOPLACTÓNICAS MEDIANTE ESPECTROSCOPÍA VISIBLE Y SU RELACIÓN CON LOS RECUENTOS POR MICROSCOPIA DE EPIFLUORESCENCIAMARTÍNEZ GUIJARRO, MARÍA REMEDIOS 11 February 2010 (has links)
El fitoplancton es uno de los compuestos orgánicos de las aguas naturales y su diagnóstico es importante para evaluar el estado ecológico de los ecosistemas acuáticos, entre ellos las aguas costeras y de transición. El enriquecimiento de nutrientes antropogénicos y las alteraciones en la cadena de alimentación, incluyendo la reducción de consumidores de fitoplancton, produce un aumento espectacular de las existencias de fitoplancton. Esto ha causado cambios significativos en los ciclos de nutrientes de las áreas costeras, en la calidad del agua, en la biodiversidad y en el estado global del ecosistema.
La caracterización de las comunidades fitoplanctónicas en ecosistemas acuáticos mediante el método de los recuentos microscópicos por epifluorescencia, es una tarea costosa en tiempo, material y recursos humanos altamente cualificados. El objetivo de este trabajo es, sin pretender sustituir a los recuentos con el microscopio sino complementarlos, poner a punto una técnica mediante espectrofotometría que disminuya estos costes, realizando medidas de espectros de absorción en el rango del visible en las muestras.
Para llevar a cabo este trabajo se han tomado muestras en cinco zonas de la costa mediterránea de España. Estas zonas corresponden a ecosistemas acuáticos en los que influyen tanto las aguas continentales como las del mar Mediterráneo, es decir, zonas costeras influidas por aguas continentales (plumas continentales) y zonas continentales influidas por aguas marinas (estuarios). Las muestras tomadas presentan un gradiente de salinidad, en función de una mayor o menor influencia continental y también en función de la capa superficial de menor salinidad que yace sobre las aguas salinas más densas. En estas muestras con distintas salinidades también existen unas diferencias cualitativas y cuantitativas de la composición fitoplanctónica. / Martínez Guijarro, MR. (2010). DETERMINACIÓN DE COMUNIDADES FITOPLACTÓNICAS MEDIANTE ESPECTROSCOPÍA VISIBLE Y SU RELACIÓN CON LOS RECUENTOS POR MICROSCOPIA DE EPIFLUORESCENCIA [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7106
|
62 |
Convnet features for age estimationBukar, Ali M., Ugail, Hassan 07 1900 (has links)
No / Research in facial age estimation has been active for over a decade. This is due to its numerous applications. Recently, convolutional neural networks (CNNs) have been used in an attempt to solve this age old problem. For this purpose, researchers have proposed various CNN architectures. Unfortunately, most of the proposed techniques have been based on relatively ‘shallow’ networks. In this work, we leverage the capability of an off-the-shelf deep CNN model, namely the VGG-Face model, which has been trained on millions of face images. Interestingly, despite being a simple approach, features extracted from the VGG-Face model, when reduced and fed into linear regressors, outperform most of the state-of-the-art CNNs. e.g. on both FGNET-AD and Morph II benchmark databases. Furthermore, contrary to using the last fully connected (FC) layer of the trained model, we evaluate the activations from different layers of the architecture. In fact, our experiments show that generic features learnt from intermediate layer activations carry more ageing information than the FC layers.
|
63 |
Near infra red spectroscopy as a multivariate process analytical tool for predicting pharmaceutical co-crystal concentrationWood, Clive, Alwati, Abdolati, Halsey, S.A., Gough, Tim, Brown, Elaine, Kelly, Adrian L., Paradkar, Anant R 07 June 2016 (has links)
Yes / The use of near infra red spectroscopy to predict the concentration of two pharmaceutical co-crystals; 1:1 ibuprofen – nicotinamide (IBU-NIC) and 1:1 carbamazepine – nicotinamide (CBZ-NIC) has been evaluated. A Partial Least Squares (PLS) regression model was developed for both co-crystal pairs using sets of standard samples to create calibration and validation data sets with which to build and validate the models. Parameters such as the root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP) and correlation coefficient were used to assess the accuracy and linearity of the models. Accurate PLS regression models were created for both co-crystal pairs which can be used to predict the co-crystal concentration in a powder mixture of the co-crystal and the active pharmaceutical ingredient (API). The IBU-NIC model had smaller errors than the CBZ-NIC model, possibly due to the complex CBZ-NIC spectra which could reflect the different arrangement of hydrogen bonding associated with the co-crystal compared to the IBU-NIC co-crystal. These results suggest that NIR spectroscopy can be used as a PAT tool during a variety of pharmaceutical co-crystal manufacturing methods and the presented data will facilitate future offline and in-line NIR studies involving pharmaceutical co-crystals.
|
64 |
Méthodes multivariées pour l'analyse jointe de données de neuroimagerie et de génétique / Multivariate methods for the joint analysis of neuroimaging and genetic dataLe floch, Edith 28 September 2012 (has links)
L'imagerie cérébrale connaît un intérêt grandissant, en tant que phénotype intermédiaire, dans la compréhension du chemin complexe qui relie les gènes à un phénotype comportemental ou clinique. Dans ce contexte, un premier objectif est de proposer des méthodes capables d'identifier la part de variabilité génétique qui explique une certaine part de la variabilité observée en neuroimagerie. Les approches univariées classiques ignorent les effets conjoints qui peuvent exister entre plusieurs gènes ou les covariations potentielles entre régions cérébrales.Notre première contribution a été de chercher à améliorer la sensibilité de l'approche univariée en tirant avantage de la nature multivariée des données génétiques, au niveau local. En effet, nous adaptons l'inférence au niveau du cluster en neuroimagerie à des données de polymorphismes d'un seul nucléotide (SNP), en cherchant des clusters 1D de SNPs adjacents associés à un même phénotype d'imagerie. Ensuite, nous prolongeons cette idée et combinons les clusters de voxels avec les clusters de SNPs, en utilisant un test simple au niveau du "cluster 4D", qui détecte conjointement des régions cérébrale et génomique fortement associées. Nous obtenons des résultats préliminaires prometteurs, tant sur données simulées que sur données réelles.Notre deuxième contribution a été d'utiliser des méthodes multivariées exploratoires pour améliorer la puissance de détection des études d'imagerie génétique, en modélisant la nature multivariée potentielle des associations, à plus longue échelle, tant du point de vue de l'imagerie que de la génétique. La régression Partial Least Squares et l'analyse canonique ont été récemment proposées pour l'analyse de données génétiques et transcriptomiques. Nous proposons ici de transposer cette idée à l'analyse de données de génétique et d'imagerie. De plus, nous étudions différentes stratégies de régularisation et de réduction de dimension, combinées avec la PLS ou l'analyse canonique, afin de faire face au phénomène de sur-apprentissage dû aux très grandes dimensions des données. Nous proposons une étude comparative de ces différentes stratégies, sur des données simulées et des données réelles d'IRM fonctionnelle et de SNPs. Le filtrage univarié semble nécessaire. Cependant, c'est la combinaison du filtrage univarié et de la PLS régularisée L1 qui permet de détecter une association généralisable et significative sur les données réelles, ce qui suggère que la découverte d'associations en imagerie génétique nécessite une approche multivariée. / Brain imaging is increasingly recognised as an interesting intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to identify the part of genetic variability that explains some neuroimaging variability. Classical univariate approaches often ignore the potential joint effects that may exist between genes or the potential covariations between brain regions. Our first contribution is to improve the sensitivity of the univariate approach by taking advantage of the multivariate nature of the genetic data in a local way. Indeed, we adapt cluster-inference techniques from neuroimaging to Single Nucleotide Polymorphism (SNP) data, by looking for 1D clusters of adjacent SNPs associated with the same imaging phenotype. Then, we push further the concept of clusters and we combined voxel clusters and SNP clusters, by using a simple 4D cluster test that detects conjointly brain and genome regions with high associations. We obtain promising preliminary results on both simulated and real datasets .Our second contribution is to investigate exploratory multivariate methods to increase the detection power of imaging genetics studies, by accounting for the potential multivariate nature of the associations, at a longer range, on both the imaging and the genetics sides. Recently, Partial Least Squares (PLS) regression or Canonical Correlation Analysis (CCA) have been proposed to analyse genetic and transcriptomic data. Here, we propose to transpose this idea to the genetics vs. imaging context. Moreover, we investigate the use of different strategies of regularisation and dimension reduction techniques combined with PLS or CCA, to face the overfitting issues due to the very high dimensionality of the data. We propose a comparison study of the different strategies on both a simulated dataset and a real fMRI and SNP dataset. Univariate selection appears to be necessary to reduce the dimensionality. However, the generalisable and significant association uncovered on the real dataset by the two-step approach combining univariate filtering and L1-regularised PLS suggests that discovering meaningful imaging genetics associations calls for a multivariate approach.
|
65 |
Utformning av mjukvarusensorer för avloppsvatten med multivariata analysmetoder / Design of soft sensors for wastewater with multivariate analysisAbrahamsson, Sandra January 2013 (has links)
Varje studie av en verklig process eller ett verkligt system är baserat på mätdata. Förr var den tillgängliga datamängden vid undersökningar ytterst begränsad, men med dagens teknik är mätdata betydligt mer lättillgängligt. Från att tidigare enbart haft få och ofta osammanhängande mätningar för någon enstaka variabel, till att ha många och så gott som kontinuerliga mätningar på ett större antal variabler. Detta förändrar möjligheterna att förstå och beskriva processer avsevärt. Multivariat analys används ofta när stora datamängder med många variabler utvärderas. I det här projektet har de multivariata analysmetoderna PCA (principalkomponentanalys) och PLS (partial least squares projection to latent structures) använts på data över avloppsvatten insamlat på Hammarby Sjöstadsverk. På reningsverken ställs idag allt hårdare krav från samhället för att de ska minska sin miljöpåverkan. Med bland annat bättre processkunskaper kan systemen övervakas och styras så att resursförbrukningen minskas utan att försämra reningsgraden. Vissa variabler är lätta att mäta direkt i vattnet medan andra kräver mer omfattande laboratorieanalyser. Några parametrar i den senare kategorin som är viktiga för reningsgraden är avloppsvattnets innehåll av fosfor och kväve, vilka bland annat kräver resurser i form av kemikalier till fosforfällning och energi till luftning av det biologiska reningssteget. Halterna av dessa ämnen i inkommande vatten varierar under dygnet och är svåra att övervaka. Syftet med den här studien var att undersöka om det är möjligt att utifrån lättmätbara variabler erhålla information om de mer svårmätbara variablerna i avloppsvattnet genom att utnyttja multivariata analysmetoder för att skapa modeller över variablerna. Modellerna kallas ofta för mjukvarusensorer (soft sensors) eftersom de inte utgörs av fysiska sensorer. Mätningar på avloppsvattnet i Linje 1 gjordes under tidsperioden 11 – 15 mars 2013 på flera ställen i processen. Därefter skapades flera multivariata modeller för att försöka förklara de svårmätbara variablerna. Resultatet visar att det går att erhålla information om variablerna med PLS-modeller som bygger på mer lättillgänglig data. De framtagna modellerna fungerade bäst för att förklara inkommande kväve, men för att verkligen säkerställa modellernas riktighet bör ytterligare validering ske. / Studies of real processes are based on measured data. In the past, the amount of available data was very limited. However, with modern technology, the information which is possible to obtain from measurements is more available, which considerably alters the possibility to understand and describe processes. Multivariate analysis is often used when large datasets which contains many variables are evaluated. In this thesis, the multivariate analysis methods PCA (principal component analysis) and PLS (partial least squares projection to latent structures) has been applied to wastewater data collected at Hammarby Sjöstadsverk WWTP (wastewater treatment plant). Wastewater treatment plants are required to monitor and control their systems in order to reduce their environmental impact. With improved knowledge of the processes involved, the impact can be significantly decreased without affecting the plant efficiency. Several variables are easy to measure directly in the water, while other require extensive laboratory analysis. Some of the parameters from the latter category are the contents of phosphorus and nitrogen in the water, both of which are important for the wastewater treatment results. The concentrations of these substances in the inlet water vary during the day and are difficult to monitor properly. The purpose of this study was to investigate whether it is possible, from the more easily measured variables, to obtain information on those which require more extensive analysis. This was done by using multivariate analysis to create models attempting to explain the variation in these variables. The models are commonly referred to as soft sensors, since they don’t actually make use of any physical sensors to measure the relevant variable. Data were collected during the period of March 11 to March 15, 2013 in the wastewater at different stages of the treatment process and a number of multivariate models were created. The result shows that it is possible to obtain information about the variables with PLS models based on easy-to-measure variables. The best created model was the one explaining the concentration of nitrogen in the inlet water.
|
66 |
Multivariate analysis of high-throughput sequencing data / Analyses multivariées de données de séquençage à haut débitDurif, Ghislain 13 December 2016 (has links)
L'analyse statistique de données de séquençage à haut débit (NGS) pose des questions computationnelles concernant la modélisation et l'inférence, en particulier à cause de la grande dimension des données. Le travail de recherche dans ce manuscrit porte sur des méthodes de réductions de dimension hybrides, basées sur des approches de compression (représentation dans un espace de faible dimension) et de sélection de variables. Des développements sont menés concernant la régression "Partial Least Squares" parcimonieuse (supervisée) et les méthodes de factorisation parcimonieuse de matrices (non supervisée). Dans les deux cas, notre objectif sera la reconstruction et la visualisation des données. Nous présenterons une nouvelle approche de type PLS parcimonieuse, basée sur une pénalité adaptative, pour la régression logistique. Cette approche sera utilisée pour des problèmes de prédiction (devenir de patients ou type cellulaire) à partir de l'expression des gènes. La principale problématique sera de prendre en compte la réponse pour écarter les variables non pertinentes. Nous mettrons en avant le lien entre la construction des algorithmes et la fiabilité des résultats.Dans une seconde partie, motivés par des questions relatives à l'analyse de données "single-cell", nous proposons une approche probabiliste pour la factorisation de matrices de comptage, laquelle prend en compte la sur-dispersion et l'amplification des zéros (caractéristiques des données single-cell). Nous développerons une procédure d'estimation basée sur l'inférence variationnelle. Nous introduirons également une procédure de sélection de variables probabiliste basée sur un modèle "spike-and-slab". L'intérêt de notre méthode pour la reconstruction, la visualisation et le clustering de données sera illustré par des simulations et par des résultats préliminaires concernant une analyse de données "single-cell". Toutes les méthodes proposées sont implémentées dans deux packages R: plsgenomics et CMF / The statistical analysis of Next-Generation Sequencing data raises many computational challenges regarding modeling and inference, especially because of the high dimensionality of genomic data. The research work in this manuscript concerns hybrid dimension reduction methods that rely on both compression (representation of the data into a lower dimensional space) and variable selection. Developments are made concerning: the sparse Partial Least Squares (PLS) regression framework for supervised classification, and the sparse matrix factorization framework for unsupervised exploration. In both situations, our main purpose will be to focus on the reconstruction and visualization of the data. First, we will present a new sparse PLS approach, based on an adaptive sparsity-inducing penalty, that is suitable for logistic regression to predict the label of a discrete outcome. For instance, such a method will be used for prediction (fate of patients or specific type of unidentified single cells) based on gene expression profiles. The main issue in such framework is to account for the response to discard irrelevant variables. We will highlight the direct link between the derivation of the algorithms and the reliability of the results. Then, motivated by questions regarding single-cell data analysis, we propose a flexible model-based approach for the factorization of count matrices, that accounts for over-dispersion as well as zero-inflation (both characteristic of single-cell data), for which we derive an estimation procedure based on variational inference. In this scheme, we consider probabilistic variable selection based on a spike-and-slab model suitable for count data. The interest of our procedure for data reconstruction, visualization and clustering will be illustrated by simulation experiments and by preliminary results on single-cell data analysis. All proposed methods were implemented into two R-packages "plsgenomics" and "CMF" based on high performance computing
|
67 |
L'hôpital magnétique : définition, conceptualisation, attributs organisationnels et conséquences perçues sur les attitudes au travail / Magnet hospital : definition, conceptualization, organizational attributes and perceived consequences on work attitudesSibé, Matthieu 21 November 2014 (has links)
De nombreux constats contemporains s’alarment du malaise récurrent des ressources humaines hospitalières, particulièrement à l’endroit des médecins et des soignants, et par conséquent du risque de mauvaise qualité de prise en charge des patients. Adoptant une approche plus optimiste, des chercheurs américains en soins infirmiers ont mis en évidence depuis le début des années 1980 l’existence d’hôpitaux dits magnétiques, parce qu’attractifs et fidélisateurs, et où il ferait bon travailler et se faire soigner. Cette thèse vise à approfondir le concept de Magnet Hospital, à éclairer sa définition et sa portée pour la gestion des ressources humaines hospitalières en France. Suivant une démarche hypothético-déductive, la conceptualisation, fondée sur un état de l’art, débute par une appropriation du modèle synthétique du Magnet Hospital. Empruntant une perspective psychosociale, notre modèle original de recherche se focalise sur la perception, à l’échelle des unités de soins, des attributs managériaux du magnétisme hospitalier (leadership transformationnel, empowerment perçu de la participation et climat relationnel collégial entre médecins et soignants) et ses conséquences attitudinales positives (satisfaction, implication, intention de rester, équilibre émotionnel travail/hors travail et efficacité collective perçue). Une méthodologie quantitative interroge au moyen de 8 échelles ad hoc un échantillon représentatif de 133 médecins, 361 infirmières et 362 aides-soignantes de 36 services de médecine polyvalente français. Une série de modélisations par équations structurelles, selon l’algorithme Partial Least Squares, teste la nature et l’intensité des relations directes et indirectes du magnétisme managérial perçu. Les résultats statistiques indiquent une bonne qualité des construits et d’ajustement des modèles. Un contexte managérial magnétique produit son principal effet positif sur l’efficacité collective perçue. Des différences catégorielles existent quant à la perception de sa composition et à la transmission de ses effets par la médiation de l’efficacité collective perçue, signalant le caractère contingent du magnétisme. Ces résultats ouvrent des perspectives managériales et scientifiques, en soulignant l’intérêt des approches positives de l’organisation hospitalière. / Many contemporary findings are alarmed of the recurring discomfort of hospital human resources, especially against doctors and nurses, and consequently against risk of poor quality of care for patients. Adopting a more optimistic approach, American nursing scholars have highlighted since the 1980s, some magnet hospitals, able to attract and retain, and with good working and care conditions. This thesis aims to explore Magnet Hospital concept, to inform its definition and scope for hospital human resource management in France. According to a hypothetico-deductive approach, based on a review of the literature, the conceptualization begins with appropriation of synthetic Magnet Hospital model. Under a psychosocial perspective, our original research model focuses on perception of managerial magnetic attributes (transformational leadership, perceived empowerment of participation, collegial climate between doctors and nurses) and their consequences on positive job attitudes (satisfaction, commitment, intent to rest, emotional equilibrium work/family, perceived collective efficacy), at wards level. A quantitative methodology proceeds by a questionnaire of 8 ad hoc scales and interviews 133 doctors, 361 nurses, 362, auxiliary nurses, in 36 French medicine units. A set of structural equations modeling, according to Partial Least Squares, tests nature and intensity of direct and indirect relationships of perceived managerial magnetism. The statistical results show a good validity of constructs and a good fit of models. The major positive effect of magnetic managerial context is on perceived collective efficacy. Some professional differences exist about perceptions of composition and transmission of magnetic effects (via mediation of perceived collective efficacy), indicating the contingency of magnetism. These findings open managerial and scientific opportunities, emphasizing the interest for positive organizational approach of hospital.
|
68 |
Novel chemometric proposals for advanced multivariate data analysis, processing and interpretationVitale, Raffaele 03 November 2017 (has links)
The present Ph.D. thesis, primarily conceived to support and reinforce the relation between academic and industrial worlds, was developed in collaboration with Shell Global Solutions (Amsterdam, The Netherlands) in the endeavour of applying and possibly extending well-established latent variable-based approaches (i.e. Principal Component Analysis - PCA - Partial Least Squares regression - PLS - or Partial Least Squares Discriminant Analysis - PLSDA) for complex problem solving not only in the fields of manufacturing troubleshooting and optimisation, but also in the wider environment of multivariate data analysis. To this end, novel efficient algorithmic solutions are proposed throughout all chapters to address very disparate tasks, from calibration transfer in spectroscopy to real-time modelling of streaming flows of data. The manuscript is divided into the following six parts, focused on various topics of interest:
Part I - Preface, where an overview of this research work, its main aims and justification is given together with a brief introduction on PCA, PLS and PLSDA;
Part II - On kernel-based extensions of PCA, PLS and PLSDA, where the potential of kernel techniques, possibly coupled to specific variants of the recently rediscovered pseudo-sample projection, formulated by the English statistician John C. Gower, is explored and their performance compared to that of more classical methodologies in four different applications scenarios: segmentation of Red-Green-Blue (RGB) images, discrimination of on-/off-specification batch runs, monitoring of batch processes and analysis of mixture designs of experiments;
Part III - On the selection of the number of factors in PCA by permutation testing, where an extensive guideline on how to accomplish the selection of PCA components by permutation testing is provided through the comprehensive illustration of an original algorithmic procedure implemented for such a purpose;
Part IV - On modelling common and distinctive sources of variability in multi-set data analysis, where several practical aspects of two-block common and distinctive component analysis (carried out by methods like Simultaneous Component Analysis - SCA - DIStinctive and COmmon Simultaneous Component Analysis - DISCO-SCA - Adapted Generalised Singular Value Decomposition - Adapted GSVD - ECO-POWER, Canonical Correlation Analysis - CCA - and 2-block Orthogonal Projections to Latent Structures - O2PLS) are discussed, a new computational strategy for determining the number of common factors underlying two data matrices sharing the same row- or column-dimension is described, and two innovative approaches for calibration transfer between near-infrared spectrometers are presented;
Part V - On the on-the-fly processing and modelling of continuous high-dimensional data streams, where a novel software system for rational handling of multi-channel measurements recorded in real time, the On-The-Fly Processing (OTFP) tool, is designed;
Part VI - Epilogue, where final conclusions are drawn, future perspectives are delineated, and annexes are included. / La presente tesis doctoral, concebida principalmente para apoyar y reforzar la relación entre la academia y la industria, se desarrolló en colaboración con Shell Global Solutions (Amsterdam, Países Bajos) en el esfuerzo de aplicar y posiblemente extender los enfoques ya consolidados basados en variables latentes (es decir, Análisis de Componentes Principales - PCA - Regresión en Mínimos Cuadrados Parciales - PLS - o PLS discriminante - PLSDA) para la resolución de problemas complejos no sólo en los campos de mejora y optimización de procesos, sino también en el entorno más amplio del análisis de datos multivariados. Con este fin, en todos los capítulos proponemos nuevas soluciones algorítmicas eficientes para abordar tareas dispares, desde la transferencia de calibración en espectroscopia hasta el modelado en tiempo real de flujos de datos.
El manuscrito se divide en las seis partes siguientes, centradas en diversos temas de interés:
Parte I - Prefacio, donde presentamos un resumen de este trabajo de investigación, damos sus principales objetivos y justificaciones junto con una breve introducción sobre PCA, PLS y PLSDA;
Parte II - Sobre las extensiones basadas en kernels de PCA, PLS y PLSDA, donde presentamos el potencial de las técnicas de kernel, eventualmente acopladas a variantes específicas de la recién redescubierta proyección de pseudo-muestras, formulada por el estadista inglés John C. Gower, y comparamos su rendimiento respecto a metodologías más clásicas en cuatro aplicaciones a escenarios diferentes: segmentación de imágenes Rojo-Verde-Azul (RGB), discriminación y monitorización de procesos por lotes y análisis de diseños de experimentos de mezclas;
Parte III - Sobre la selección del número de factores en el PCA por pruebas de permutación, donde aportamos una guía extensa sobre cómo conseguir la selección de componentes de PCA mediante pruebas de permutación y una ilustración completa de un procedimiento algorítmico original implementado para tal fin;
Parte IV - Sobre la modelización de fuentes de variabilidad común y distintiva en el análisis de datos multi-conjunto, donde discutimos varios aspectos prácticos del análisis de componentes comunes y distintivos de dos bloques de datos (realizado por métodos como el Análisis Simultáneo de Componentes - SCA - Análisis Simultáneo de Componentes Distintivos y Comunes - DISCO-SCA - Descomposición Adaptada Generalizada de Valores Singulares - Adapted GSVD - ECO-POWER, Análisis de Correlaciones Canónicas - CCA - y Proyecciones Ortogonales de 2 conjuntos a Estructuras Latentes - O2PLS). Presentamos a su vez una nueva estrategia computacional para determinar el número de factores comunes subyacentes a dos matrices de datos que comparten la misma dimensión de fila o columna y dos planteamientos novedosos para la transferencia de calibración entre espectrómetros de infrarrojo cercano;
Parte V - Sobre el procesamiento y la modelización en tiempo real de flujos de datos de alta dimensión, donde diseñamos la herramienta de Procesamiento en Tiempo Real (OTFP), un nuevo sistema de manejo racional de mediciones multi-canal registradas en tiempo real;
Parte VI - Epílogo, donde presentamos las conclusiones finales, delimitamos las perspectivas futuras, e incluimos los anexos. / La present tesi doctoral, concebuda principalment per a recolzar i reforçar la relació entre l'acadèmia i la indústria, es va desenvolupar en col·laboració amb Shell Global Solutions (Amsterdam, Països Baixos) amb l'esforç d'aplicar i possiblement estendre els enfocaments ja consolidats basats en variables latents (és a dir, Anàlisi de Components Principals - PCA - Regressió en Mínims Quadrats Parcials - PLS - o PLS discriminant - PLSDA) per a la resolució de problemes complexos no solament en els camps de la millora i optimització de processos, sinó també en l'entorn més ampli de l'anàlisi de dades multivariades. A aquest efecte, en tots els capítols proposem noves solucions algorítmiques eficients per a abordar tasques dispars, des de la transferència de calibratge en espectroscopia fins al modelatge en temps real de fluxos de dades.
El manuscrit es divideix en les sis parts següents, centrades en diversos temes d'interès:
Part I - Prefaci, on presentem un resum d'aquest treball de recerca, es donen els seus principals objectius i justificacions juntament amb una breu introducció sobre PCA, PLS i PLSDA;
Part II - Sobre les extensions basades en kernels de PCA, PLS i PLSDA, on presentem el potencial de les tècniques de kernel, eventualment acoblades a variants específiques de la recentment redescoberta projecció de pseudo-mostres, formulada per l'estadista anglés John C. Gower, i comparem el seu rendiment respecte a metodologies més clàssiques en quatre aplicacions a escenaris diferents: segmentació d'imatges Roig-Verd-Blau (RGB), discriminació i monitorització de processos per lots i anàlisi de dissenys d'experiments de mescles;
Part III - Sobre la selecció del nombre de factors en el PCA per proves de permutació, on aportem una guia extensa sobre com aconseguir la selecció de components de PCA a través de proves de permutació i una il·lustració completa d'un procediment algorítmic original implementat per a la finalitat esmentada;
Part IV - Sobre la modelització de fonts de variabilitat comuna i distintiva en l'anàlisi de dades multi-conjunt, on discutim diversos aspectes pràctics de l'anàlisis de components comuns i distintius de dos blocs de dades (realitzat per mètodes com l'Anàlisi Simultània de Components - SCA - Anàlisi Simultània de Components Distintius i Comuns - DISCO-SCA - Descomposició Adaptada Generalitzada en Valors Singulars - Adapted GSVD - ECO-POWER, Anàlisi de Correlacions Canòniques - CCA - i Projeccions Ortogonals de 2 blocs a Estructures Latents - O2PLS). Presentem al mateix temps una nova estratègia computacional per a determinar el nombre de factors comuns subjacents a dues matrius de dades que comparteixen la mateixa dimensió de fila o columna, i dos plantejaments nous per a la transferència de calibratge entre espectròmetres d'infraroig proper;
Part V - Sobre el processament i la modelització en temps real de fluxos de dades d'alta dimensió, on dissenyem l'eina de Processament en Temps Real (OTFP), un nou sistema de tractament racional de mesures multi-canal registrades en temps real;
Part VI - Epíleg, on presentem les conclusions finals, delimitem les perspectives futures, i incloem annexos. / Vitale, R. (2017). Novel chemometric proposals for advanced multivariate data analysis, processing and interpretation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90442
|
69 |
Customer perceived value : reconceptualisation, investigation and measurementBruce, Helen Louise January 2013 (has links)
The concept of customer perceived value occupies a prominent position within the strategic agenda of organisations, as firms seek to maximise the value perceived by their customers as arising from their consumption, and to equal or exceed that perceived in relation to competitor propositions. Customer value management is similarly central to the marketing discipline. However, the nature of customer value remains ambiguous and its measurement is typically flawed, due to the poor conceptual foundation upon which previous research endeavours are built. This investigation seeks to address the current poverty of insight regarding the nature and measurement of customer value. The development of a revised conceptual framework synthesises the strengths of previous value conceptualisations while addressing many of their limitations. A multi-dimensional depiction of value arising from customer experience is presented, in which value is conceptualised as arising at both first-order dimension and overall, second-order levels of abstraction. The subsequent operationalisation of this conceptual framework within a two-phase investigation combines qualitative and quantitative methodologies in a study of customer value arising from subscription TV (STV) consumption. Sixty semi-structured interviews with 103 existing STV customers give rise to a multi-dimensional model of value, in which dimensions are categorised as restorative, actualising and hedonic in type, and as arising via individual, reflected or shared modes of perception. The quantitative investigation entails two periods of data collection via questionnaires developed from the qualitative findings, and the gathering of 861 responses, also from existing STV customers. A series of scales with which to measure value dimensions is developed and an index enabling overall perceived value measurement is produced. Contributions to theory of customer value arise in the form of enhanced insights regarding its nature. At the first-order dimension level, the derived dimensions are of specific relevance to the STV industry. However, the empirically derived framework of dimension types and modes of perception has potential applicability in multiple contexts. At the more abstract, second-order level, the findings highlight that value perceptions comprise only a subset of potential dimensions. Evidence is thus presented of the need to consider value at both dimension and overall levels of perception. Contributions to knowledge regarding customer value measurement also arise, as the study produces reliable and valid scales and an index. This latter tool is novel in its formative measurement of value as a second order construct, comprising numerous first-order dimensions of value, rather than quality as incorporated in previously derived measures. This investigation also results in a contribution to theory regarding customer experience through the identification of a series of holistic, discrete, direct and indirect value-generating interactions. Contributions to practice within the STV industry arise as the findings present a solution to the immediate need for enhanced value insight. Contributions to alternative industries are methodological, as this study presents a detailed process through which robust value insight can be derived. Specific methodological recommendations arise in respect of the need for empirically grounded research, an experiential focus and a twostage quantitative methodology.
|
70 |
[en] CARACTEREZITION OF GASOLINES BY FT-RAMAN SPECTROSCOPY / [pt] CARACTERIZAÇÃO DE GASOLINAS POR ESPECTROSCOPIA FT- RAMANJOSE FLAVIO MARTINS CRUZ 23 December 2003 (has links)
[pt] Visando determinar os teores dos componentes relevantes e as
propriedades físicas de gasolinas comerciais e sintéticas
foram tomados espectros Raman de 60 gasolinas comerciais e
52 misturas sintéticas simulando gasolinas. Os espectros
foram tomados em um espectrômetro Nicolet FT Raman 950. Os
espectros brutos obtidos foram tratados para evitar a
influência da variabilidade de potência do laser excitante
sobre as intensidades das linhas Raman. As variáveis
independentes (intensidades Raman ) e as variáveis
dependentes (propriedades das gasolinas comerciais e
misturas sintéticas ) foram centradas em torno da média e
submetidas à regressão por mínimos quadrados parciais,
visando ajustar modelos que permitissem predizer
quantitativamente os teores de etanol, hidrocarbonetos
saturados, insaturados e aromáticos além dos valores das
propriedades MON, RON, densidade e pontos de ebulição
inicial, final, a 10%, 50% e 90% das amostras em estudo. Os
resultados obtidos mostraram a potencialidade da
espectroscopia Raman, para o desenvolvimento de métodos
confiáveis para a análise de diversas características das
gasolinas estudadas. / [en] The aim of this work was to determine the contents of the
more important components and physical properties of
commercial gasolines and synthetic mixtures with known
composition, prepared in the laboratory. The Raman spectra
of 60 gasolines and 52 mixtures were acquired with a
Nicolet 950 Fourier Transform Raman (FT-Raman)
spectrometer. The raw spectra were treated to avoid the
laser potency variability on Raman lines intensities. The
independent variables (Raman intensities) and the dependent
variables (gasolines and mixtures properties) were mean
centered and models were fit by partial least square
regression seeking to predict the contents of ethanol,
saturated, unsaturated and aromatic hydrocarbons. Also
properties as MON, RON, density and boiling point values
were determined by this procedure. The final results showed
the potential of Raman spectroscopy for analysis of several
properties of gasolines.
|
Page generated in 1.0277 seconds