• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 70
  • 23
  • 22
  • 15
  • 12
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 375
  • 375
  • 316
  • 76
  • 70
  • 65
  • 65
  • 61
  • 50
  • 45
  • 44
  • 43
  • 42
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Discrete Particle Swarm Optimization Algorithm For Optimal Operation Of Reconfigurable Distribution Grids

Xue, Wenqin 09 December 2011 (has links)
Optimization techniques are widely applied in the power system planning and operation to achieve more efficient and reliable power supply. With the introduction of new technologies, the complexity of today’s power system increased significantly. Intelligent optimization techniques, such as Particle Swarm Optimization (PSO), can efficiently deal with the new challenges compared to conventional optimization techniques. This thesis presents applications of discrete PSO in two specific environments. The first one is for day-ahead optimal scheduling of the reconfigurable gird with distributed energy resources. The second one is a two-step method for rapid reconfiguration of shipboard power system. Effective techniques, such as graph theory, optimal power flow and heuristic mutation, are employed to make the PSO algorithm more suitable to application environments and achieve better performance.
32

Short-term wind power forecasting using artificial neural networks-based ensemble model

Chen,Qin 20 July 2022 (has links) (PDF)
Short-term wind power forecasting is crucial for the efficient operation of power systems with high wind power penetration. Many forecasting approaches have been developed in the past to forecast short-term wind power. In recent years, artificial neural network-based approaches (ANNs) have been one of the most effective and popular approaches for short-term wind power forecasting because of the availability of large amounts of historical data and strong computational power. Although ANNs usually perform well for short-term wind power forecasting, further improvement can be obtained by selecting suitable input features, model parameters, and using forecasting techniques like spatial correlation and ensemble for ANNs. In this research, the effect of input features, model parameters, spatial correlation and ensemble techniques on short-term wind power forecasting performance of the ANNs models was evaluated. Pearson correlation coefficients between wind speed and other meteorological variables, together with a basic ANN model, were used to determine the impact of different input features on the forecasting performance of the ANNs. The effect of training sample resolution and training sample size on the forecasting performance was also investigated. To separately investigate the impact of the number of hidden layers and the number of hidden neurons on short-term wind power forecasting and to keep a single variable for each experiment, the same number of hidden neurons was used in each hidden layer. The ANNs with a total of 20 hidden neurons are shown to be sufficient for the nonlinear multivariate wind power forecasting problems faced in this dissertation. The ANNs with two hidden layers performed better than the one with a single hidden layer because additional hidden layer adds nonlinearity to the model. However, the ANNs with more than two hidden layers have the same or worse forecasting performance than the one with two hidden layers. ANNs with too many hidden layers and hidden neurons can overfit the training data. Spatial correlation technique was used to include meteorological variables from highly correlated neighbouring stations as input features to provide more surrounding information to the ANNs. The advantages of input features, model parameters, and spatial correlation and ensemble techniques were combined to form an ANN-based ensemble model to further enhance the forecasting performance from an individual ANN model. The simulation results show that all the available meteorological variables have different levels of impact on forecasting performance. Wind speed has the most significant impact on both short-term wind speed and wind power forecasting, whereas air temperature, barometric pressure, and air density have the smallest effects. The ANNs perform better with a higher data resolution and a significantly larger training sample size. However, one requires more computational power and a longer training time to train the model with a higher data resolution and a larger training sample size. Using the meteorological variables from highly related neighbouring stations do significantly improve the forecasting accuracy of target stations. It is shown that an ANNs-based ensemble model can further enhance the forecasting performance of an individual ANN by obtaining a large amount of surrounding meteorological information in parallel without encountering the overfitting issue faced by a single ANN model.
33

An efficient intelligent analysis system for confocal corneal endothelium images

Sharif, Mhd Saeed, Qahwaji, Rami S.R., Shahamatnia, E., Alzubaidi, R., Ipson, Stanley S., Brahma, A. 01 September 2015 (has links)
Yes / A confocal microscope provides a sequence of images of the corneal layers and structures at different depths from which medical clinicians can extract clinical information on the state of health of the patient’s cornea. Hybrid model based on snake and particle swarm optimisation (S-PSO) is proposed in this paper to analyse the confocal endothelium images. The proposed system is able to pre-process (quality enhancement, noise reduction), detect the cells, measure the cell density and identify abnormalities in the analysed data sets. Three normal corneal data sets acquired using confocal microscope, and two abnormal endothelium images associated with diseases have been investigated in the proposed system. Promising results are achieved and the performance of this system are compared with the performance of two morphological based approaches. The developed system can be deployed as clinical tool to underpin the expertise of ophthalmologists in analysing confocal corneal images.
34

Optimization of Aperiodically Spaced Antenna Arrays for Wideband Applications

Baggett, Benjamin Matthew Wall 06 June 2011 (has links)
Over the years, phased array antennas have provided electronic scanning with high gain and low sidelobe levels for many radar and satellite applications. The need for higher bandwidth as well as greater scanning ability has led to research in the area of aperiodically spaced antenna arrays. Aperiodic arrays use variable spacing between antenna elements and generally require fewer elements than periodically spaced arrays to achieve similar far field pattern performance. This reduction in elements allows the array to be built at much lower cost than traditional phased arrays. This thesis introduces the concept of aperiodic phased arrays and their design via optimization algorithms, specifically Particle Swarm Optimization. An axial mode helix is designed as the antenna array element to obtain the required half power beamwidth and bandwidth. The final optimized aperiodic array is compared to a traditional periodic array and conclusions are made. / Master of Science
35

Optimal Substation Coverage for Phasor Measurement Unit Installations

Mishra, Chetan 26 January 2015 (has links)
The PMU has been found to carry great deal of value for applications in the wide area monitoring of power systems. Historically, deployment of these devices has been limited by the prohibitive cost of the device itself. Therefore, the objective of the conventional optimal PMU placement problem is to find the minimum number devices, which if carefully placed throughout the network, either maximize observability or completely observe subject to different constraints. Now due to improved technology and digital relays serving a dual use as relay & PMU, the cost of the PMU device itself is not the largest portion of the deployment cost, but rather the substation installation. In a recently completed large-scale deployment of PMUs on the EHV network, Virginia Electric & Power Company (VEPCO) has found this to be so. The assumption then becomes that if construction work is done in a substation, enough PMU devices will be placed such that everything at that substation is measured. This thesis presents a technique proposed to minimize the number of substation installations thus indirectly minimizing the synchrophasor deployment costs. Also presented is a brief history of the PMU and its applications along with the conventional Optimal PMU placement problem and the scope for expanding this work. / Master of Science
36

[en] PSO+: A LINEAR AND NONLINEAR CONSTRAINTS-HANDLING PARTICLE SWARM OPTIMIZATION / [pt] PSO+: ALGORITMO COM BASE EM ENXAME DE PARTÍCULAS PARA PROBLEMAS COM RESTRIÇÕES LINEARES E NÃO LINEARES

MANOELA RABELLO KOHLER 15 August 2019 (has links)
[pt] O algoritmo de otimização por enxame de partículas (PSO, do inglês Particle Swarm Optimization) é uma meta-heurística baseada em populações de indivíduos na qual os candidatos à solução evoluem através da simulação de um modelo simplificado de adaptação social. Juntando robustez, eficiência e simplicidade, o PSO tem adquirido grande popularidade. São reportadas muitas aplicações bem-sucedidas do PSO nas quais este algoritmo demonstrou ter vantagens sobre outras meta-heurísticas bem estabelecidas baseadas em populações de indivíduos. Algoritmos modificados de PSO já foram propostos para resolver problemas de otimização com restrições de domínio, lineares e não lineares. A grande maioria desses algoritmos utilizam métodos de penalização, que possuem, em geral, inúmeras limitações, como por exemplo: (i) cuidado adicional ao se determinar a penalidade apropriada para cada problema, pois deve-se manter o equilíbrio entre a obtenção de soluções válidas e a busca pelo ótimo; (ii) supõem que todas as soluções devem ser avaliadas. Outros algoritmos que utilizam otimização multi-objetivo para tratar problemas restritos enfrentam o problema de não haver garantia de se encontrar soluções válidas. Os algoritmos PSO propostos até hoje que lidam com restrições, de forma a garantir soluções válidas utilizando operadores de viabilidade de soluções e de forma a não necessitar de avaliação de soluções inválidas, ou somente tratam restrições de domínio controlando a velocidade de deslocamento de partículas no enxame, ou o fazem de forma ineficiente, reinicializando aleatoriamente cada partícula inválida do enxame, o que pode tornar inviável a otimização de determinados problemas. Este trabalho apresenta um novo algoritmo de otimização por enxame de partículas, denominado PSO+, capaz de resolver problemas com restrições lineares e não lineares de forma a solucionar essas deficiências. A modelagem do algoritmo agrega seis diferentes capacidades para resolver problemas de otimização com restrições: (i) redirecionamento aritmético de validade de partículas; (ii) dois enxames de partículas, onde cada enxame tem um papel específico na otimização do problema; (iii) um novo método de atualização de partículas para inserir diversidade no enxame e melhorar a cobertura do espaço de busca, permitindo que a borda do espaço de busca válido seja devidamente explorada – o que é especialmente conveniente quando o problema a ser otimizado envolve restrições ativas no ótimo ou próximas do ótimo; (iv) duas heurísticas de criação da população inicial do enxame com o objetivo de acelerar a inicialização das partículas, facilitar a geração da população inicial válida e garantir diversidade no ponto de partida do processo de otimização; (v) topologia de vizinhança, denominada vizinhança de agrupamento aleatório coordenado para minimizar o problema de convergência prematura da otimização; (vi) módulo de transformação de restrições de igualdade em restrições de desigualdade. O algoritmo foi testado em vinte e quatro funções benchmarks – criadas e propostas em uma competição de algoritmos de otimização –, assim como em um problema real de otimização de alocação de poços em um reservatório de petróleo. Os resultados experimentais mostram que o novo algoritmo é competitivo, uma vez que aumenta a eficiência do PSO e a velocidade de convergência. / [en] The Particle Swarm Optimization (PSO) algorithm is a metaheuristic based on populations of individuals in which solution candidates evolve through simulation of a simplified model of social adaptation. By aggregating robustness, efficiency and simplicity, PSO has gained great popularity. Many successful applications of PSO are reported in which this algorithm has demonstrated advantages over other well-established metaheuristics based on populations of individuals. Modified PSO algorithms have been proposed to solve optimization problems with domain, linear and nonlinear constraints; The great majority of these algorithms make use of penalty methods, which have, in general, numerous limitations, such as: (i) additional care in defining the appropriate penalty for each problem, since a balance must be maintained between obtaining valid solutions and the searching for an optimal solution; (ii) they assume all solutions must be evaluated. Other algorithms that use multi-objective optimization to deal with constrained problems face the problem of not being able to guarantee finding feasible solutions. The proposed PSO algorithms up to this date that deal with constraints, in order to guarantee valid solutions using feasibility operators and not requiring the evaluation of infeasible solutions, only treat domain constraints by controlling the velocity of particle displacement in the swarm, or do so inefficiently by randomly resetting each infeasible particle, which may make it infeasible to optimize certain problems. This work presents a new particle swarm optimization algorithm, called PSO+, capable of solving problems with linear and nonlinear constraints in order to solve these deficiencies. The modeling of the algorithm has added six different capabilities to solve constrained optimization problems: (i) arithmetic redirection to ensure particle feasibility; (ii) two particle swarms, where each swarm has a specific role in the optimization the problem; (iii) a new particle updating method to insert diversity into the swarm and improve the coverage of the search space, allowing its edges to be properly exploited – which is especially convenient when the problem to be optimized involves active constraints at the optimum solution; (iv) two heuristics to initialize the swarm in order to accelerate and facilitate the initialization of the feasible initial population and guarantee diversity at the starting point of the optimization process; (v) neighborhood topology, called coordinated random clusters neighborhood to minimize optimization premature convergence problem; (vi) transformation of equality constraints into inequality constraints. The algorithm was tested for twenty-four benchmark functions – created and proposed for an optimization competition – as well as in a real optimization problem of well allocation in an oil reservoir. The experimental results show that the new algorithm is competitive, since it increases the efficiency of the PSO and the speed of convergence.
37

Algoritmo enxame de partículas evolutivo para o problema de coordenação de relés de sobrecorrente direcionais em sistemas elétricos de potência / Particle swarm evolutionary algorithm for the coordination problem of directional overcurrent relays in power systems

Santos, Fábio Marcelino de Paula 21 June 2013 (has links)
Um sistema elétrico de potência agrega toda a estrutura pela qual a energia elétrica percorre, desde a sua geração até o seu consumo final. Nas últimas décadas observou-se um significativo aumento da demanda e, consequentemente, um aumento das interligações entre sistemas, tornando assim a operação e o controle destes extremamente complexos. Com o fim de obter a desejada operação destes sistemas, inúmeros estudos na área de Proteção de Sistemas Elétricos são realizados, pois é sabido que a interrupção desses serviços causam transtornos que podem assumir proporções desastrosas. Em sistemas elétricos malhados, nos quais as correntes de curto-circuito podem ser bidirecionais e podem ter intensidades diferentes devido a alterações topológicas nos mesmos, coordenar relés de sobrecorrente pode ser uma tarefa muito trabalhosa caso não haja nenhuma ferramenta de apoio. Neste contexto, este trabalho visa o desenvolvimento de uma metodologia eficiente que determine os ajustes otimizados dos relés de sobrecorrente direcionais instalados em sistemas elétricos malhados de forma a garantir a rapidez na eliminação da falta, bem como a coordenação e seletividade, considerando as várias intensidades das correntes de curto-circuito. Seguindo essa linha de raciocínio, observou-se que o uso de técnicas metaheurísticas para lidar com o problema da coordenação de relés é capaz de alcançar resultados significativos. No presente projeto, dentre os algoritmos inteligentes estudados, optou-se por pesquisar a aplicação do Algoritmo Enxame de Partículas Evolutivo (Evolutionary Particle Swarm Optimization) por este apresentar como características as vantagens tanto do Algoritmo Enxame de Partículas (Particle Swarm Optimization) quanto as dos Algoritmos Genéticos, possuindo assim grande potencial para solução destes tipos de problemas. / An electric power system aggregates all the structure in which the electric energy travels, from its generation to the final user. In the last decades it has been observed a significative increase of the demand and, consequently, an increment of the number of interconnections between systems, making the operation and control of them extremely complex. Aiming to obtain a good operation of this kind of systems, a lot of effort in the research area of power system protection has been spent, because it is known that the interruption of this service causes disorders that may assume disastrous proportions. In meshed power systems, in which the shortcircuit currents might be bidirectional and might have different magnitudes due to topological changes on them, to coordinate overcurrent relays may be a really hard task if you do not have a support tool. Look in this context, this work aims the development of and efficient methodology thats determine the optimal parameters of the directional overcurrent relays in a meshed electric power system ensuring the quickness in the fault elimination, as well as the coordination and selectivity of the protection system, considering the various intensities of the short-circuit currents. Maintaining this line, it has been noticed that the use of metaheuristics to deal with the problem of relay coordination is capable of achieving promissory results. In the present research, among the studied intelligent algorithms, it was chosen to use in it the Evolutionary Particle Swarm Optimization, due to its features thats is the advantages of the Particle Swarm Optimization as well as the Genetic Algorithms ones, hence it has great potential do solve theses kind of problems.
38

Algoritmo híbrido para avaliação da integridade estrutural: uma abordagem heurística / Hybrid algorithm for damage detection: a heuristic approach

Begambre Carrillo, Oscar Javier 25 June 2007 (has links)
Neste estudo, o novo algoritmo hibrido autoconfigurado PSOS (Particle Swarm Optimization - Simplex) para avaliação da integridade estrutural a partir de respostas dinâmicas é apresentado. A formulação da função objetivo para o problema de minimização definido emprega funções de resposta em freqüência e/ou dados modais do sistema. Uma nova estratégia para o controle dos parâmetros do algoritmo Particle Swarm Optimization (PSO), baseada no uso do método de Nelder - Mead é desenvolvida; conseqüentemente, a convergência do PSO fica independente dos parâmetros heurísticos e sua estabilidade e precisão são melhoradas. O método híbrido proposto teve melhor desempenho, nas diversas funções teste analisadas, quando comparado com os algoritmos simulated annealing, algoritmos genéticos e o PSO. São apresentados diversos problemas de detecção de dano, levando em conta os efeitos do ruído e da falta de dados experimentais. Em todos os casos, a posição e extensão do dano foram determinadas com sucesso. Finalmente, usando o PSOS, os parâmetros de um oscilador não linear (oscilador de Duffing) foram identificados. / In this study, a new auto configured Particle Swarm Optimization - Simplex algorithm for damage detection has been proposed. The formulation of the objective function for the minimization problem is based on the frequency response functions (FRFs) and the modal parameters of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and accuracy are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA), the Genetic Algorithm (GA) and the basic PSO. Several damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied. In these cases, the damage location and extent were determined successfully. Finally, using the PSOS, a non-linear oscillator (Duffing oscillator) was identified with good results.
39

Algoritmo enxame de partículas evolutivo para o problema de coordenação de relés de sobrecorrente direcionais em sistemas elétricos de potência / Particle swarm evolutionary algorithm for the coordination problem of directional overcurrent relays in power systems

Fábio Marcelino de Paula Santos 21 June 2013 (has links)
Um sistema elétrico de potência agrega toda a estrutura pela qual a energia elétrica percorre, desde a sua geração até o seu consumo final. Nas últimas décadas observou-se um significativo aumento da demanda e, consequentemente, um aumento das interligações entre sistemas, tornando assim a operação e o controle destes extremamente complexos. Com o fim de obter a desejada operação destes sistemas, inúmeros estudos na área de Proteção de Sistemas Elétricos são realizados, pois é sabido que a interrupção desses serviços causam transtornos que podem assumir proporções desastrosas. Em sistemas elétricos malhados, nos quais as correntes de curto-circuito podem ser bidirecionais e podem ter intensidades diferentes devido a alterações topológicas nos mesmos, coordenar relés de sobrecorrente pode ser uma tarefa muito trabalhosa caso não haja nenhuma ferramenta de apoio. Neste contexto, este trabalho visa o desenvolvimento de uma metodologia eficiente que determine os ajustes otimizados dos relés de sobrecorrente direcionais instalados em sistemas elétricos malhados de forma a garantir a rapidez na eliminação da falta, bem como a coordenação e seletividade, considerando as várias intensidades das correntes de curto-circuito. Seguindo essa linha de raciocínio, observou-se que o uso de técnicas metaheurísticas para lidar com o problema da coordenação de relés é capaz de alcançar resultados significativos. No presente projeto, dentre os algoritmos inteligentes estudados, optou-se por pesquisar a aplicação do Algoritmo Enxame de Partículas Evolutivo (Evolutionary Particle Swarm Optimization) por este apresentar como características as vantagens tanto do Algoritmo Enxame de Partículas (Particle Swarm Optimization) quanto as dos Algoritmos Genéticos, possuindo assim grande potencial para solução destes tipos de problemas. / An electric power system aggregates all the structure in which the electric energy travels, from its generation to the final user. In the last decades it has been observed a significative increase of the demand and, consequently, an increment of the number of interconnections between systems, making the operation and control of them extremely complex. Aiming to obtain a good operation of this kind of systems, a lot of effort in the research area of power system protection has been spent, because it is known that the interruption of this service causes disorders that may assume disastrous proportions. In meshed power systems, in which the shortcircuit currents might be bidirectional and might have different magnitudes due to topological changes on them, to coordinate overcurrent relays may be a really hard task if you do not have a support tool. Look in this context, this work aims the development of and efficient methodology thats determine the optimal parameters of the directional overcurrent relays in a meshed electric power system ensuring the quickness in the fault elimination, as well as the coordination and selectivity of the protection system, considering the various intensities of the short-circuit currents. Maintaining this line, it has been noticed that the use of metaheuristics to deal with the problem of relay coordination is capable of achieving promissory results. In the present research, among the studied intelligent algorithms, it was chosen to use in it the Evolutionary Particle Swarm Optimization, due to its features thats is the advantages of the Particle Swarm Optimization as well as the Genetic Algorithms ones, hence it has great potential do solve theses kind of problems.
40

Bayesian inference for compact binary sources of gravitational waves / Inférence Bayésienne pour les sources compactes binaires d’ondes gravitationnelles

Bouffanais, Yann 11 October 2017 (has links)
La première détection des ondes gravitationnelles en 2015 a ouvert un nouveau plan d'étude pour l'astrophysique des étoiles binaires compactes. En utilisant les données des détections faites par les détecteurs terrestres advanced LIGO et advanced Virgo, il est possible de contraindre les paramètres physiques de ces systèmes avec une analyse Bayésienne et ainsi approfondir notre connaissance physique des étoiles binaires compactes. Cependant, pour pouvoir être en mesure d'obtenir de tels résultats, il est essentiel d’avoir des algorithmes performants à la fois pour trouver les signaux de ces ondes gravitationnelles et pour l'estimation de paramètres. Le travail de cette thèse a ainsi été centré autour du développement d’algorithmes performants et adaptées au problème physique à la fois de la détection et de l'estimation des paramètres pour les ondes gravitationnelles. La plus grande partie de ce travail de thèse a ainsi été dédiée à l'implémentation d’un algorithme de type Hamiltonian Monte Carlo adapté à l'estimation de paramètres pour les signaux d’ondes gravitationnelles émises par des binaires compactes formées de deux étoiles à neutrons. L'algorithme développé a été testé sur une sélection de sources et a été capable de fournir de meilleures performances que d'autres algorithmes de type MCMC comme l'algorithme de Metropolis-Hasting et l'algorithme à évolution différentielle. L'implémentation d'un tel algorithme dans les pipelines d’analyse de données de la collaboration pourrait augmenter grandement l'efficacité de l'estimation de paramètres. De plus, il permettrait également de réduire drastiquement le temps de calcul nécessaire, ce qui est un facteur essentiel pour le futur où de nombreuses détections sont attendues. Un autre aspect de ce travail de thèse a été dédié à l'implémentation d'un algorithme de recherche de signaux gravitationnelles pour les binaires compactes monochromatiques qui seront observées par la future mission spatiale LISA. L'algorithme est une mixture de plusieurs algorithmes évolutionnistes, avec notamment l'inclusion d'un algorithme de Particle Swarm Optimisation. Cette algorithme a été testé dans plusieurs cas tests et a été capable de trouver toutes les sources gravitationnelles comprises dans un signal donné. De plus, l'algorithme a également été capable d'identifier des sources sur une bande de fréquence aussi grande que 1 mHz, ce qui n'avait pas été réalisé au moment de cette étude de thèse. / The first detection of gravitational waves in 2015 has opened a new window for the study of the astrophysics of compact binaries. Thanks to the data taken by the ground-based detectors advanced LIGO and advanced Virgo, it is now possible to constrain the physical parameters of compact binaries using a full Bayesian analysis in order to increase our physical knowledge on compact binaries. However, in order to be able to perform such analysis, it is essential to have efficient algorithms both to search for the signals and for parameter estimation. The main part of this thesis has been dedicated to the implementation of a Hamiltonian Monte Carlo algorithm suited for the parameter estimation of gravitational waves emitted by compact binaries composed of neutron stars. The algorithm has been tested on a selection of sources and has been able to produce better performances than other types of MCMC methods such as Metropolis-Hastings and Differential Evolution Monte Carlo. The implementation of the HMC algorithm in the data analysis pipelines of the Ligo/Virgo collaboration could greatly increase the efficiency of parameter estimation. In addition, it could also drastically reduce the computation time associated to the parameter estimation of such sources of gravitational waves, which will be of particular interest in the near future when there will many detections by the ground-based network of gravitational wave detectors. Another aspect of this work was dedicated to the implementation of a search algorithm for gravitational wave signals emitted by monochromatic compact binaries as observed by the space-based detector LISA. The developed algorithm is a mixture of several evolutionary algorithms, including Particle Swarm Optimisation. This algorithm has been tested on several test cases and has been able to find all the sources buried in a signal. Furthermore, the algorithm has been able to find the sources on a band of frequency as large as 1 mHz which wasn’t done at the time of this thesis study

Page generated in 0.1054 seconds