• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 45
  • 22
  • 20
  • 14
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 381
  • 381
  • 96
  • 83
  • 80
  • 68
  • 56
  • 55
  • 52
  • 49
  • 48
  • 43
  • 42
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Robot path planning using 2D image processing in a drawing application

Rodriguez Baidez, Elvira Maria, Beltrá Fuerte, Jorge January 2022 (has links)
Currently, robotics is a discipline that is present, and it is becoming more important in daily life and different areas. Moreover, the research in this field is making improvements on the tasks that robots can perform, making it possible to appear in disciplines that have typically been made by humans, such as Art. In this project, it has been developed and implemented a program that allows the creation of paths after processing a picture, and the control of a real robot to follow the generated paths, in this case, the objective is to perform a sketch from a given picture. Nevertheless, it is applicable in many areas that need this kind of application like processing images, identification of trajectories, and path following. Moreover, in this project, it has been developed to simulate in a virtual environment the path planning and all the features of the real robot, which suppose that the user can check trajectories before trying on the real world, avoid problems of collisions or work without needing the physical robot. For that reason, the objective of this project is to contribute to the development of robotics and create a base that could be used in future research or as a source of information for similar projects that will be performed in the future.
192

A Virtual Reality Visualization Ofan Analytical Solution Tomobile Robot Trajectory Generationin The Presence Of Moving Obstacles

Elias, Ricardo 01 January 2007 (has links)
Virtual visualization of mobile robot analytical trajectories while avoiding moving obstacles is presented in this thesis as a very helpful technique to properly display and communicate simulation results. Analytical solutions to the path planning problem of mobile robots in the presence of obstacles and a dynamically changing environment have been presented in the current robotics and controls literature. These techniques have been demonstrated using two-dimensional graphical representation of simulation results. In this thesis, the analytical solution published by Dr. Zhihua Qu in December 2004 is used and simulated using a virtual visualization tool called VRML.
193

Control Of Nonh=holonomic Systems

Yuan, Hongliang 01 January 2009 (has links)
Many real-world electrical and mechanical systems have velocity-dependent constraints in their dynamic models. For example, car-like robots, unmanned aerial vehicles, autonomous underwater vehicles and hopping robots, etc. Most of these systems can be transformed into a chained form, which is considered as a canonical form of these nonholonomic systems. Hence, study of chained systems ensure their wide applicability. This thesis studied the problem of continuous feed-back control of the chained systems while pursuing inverse optimality and exponential convergence rates, as well as the feed-back stabilization problem under input saturation constraints. These studies are based on global singularity-free state transformations and controls are synthesized from resulting linear systems. Then, the application of optimal motion planning and dynamic tracking control of nonholonomic autonomous underwater vehicles is considered. The obtained trajectories satisfy the boundary conditions and the vehicles' kinematic model, hence it is smooth and feasible. A collision avoidance criteria is set up to handle the dynamic environments. The resulting controls are in closed forms and suitable for real-time implementations. Further, dynamic tracking controls are developed through the Lyapunov second method and back-stepping technique based on a NPS AUV II model. In what follows, the application of cooperative surveillance and formation control of a group of nonholonomic robots is investigated. A designing scheme is proposed to achieves a rigid formation along a circular trajectory or any arbitrary trajectories. The controllers are decentralized and are able to avoid internal and external collisions. Computer simulations are provided to verify the effectiveness of these designs.
194

A modified membrane-inspired algorithm based on particle swarm optimization for mobile robot path planning

Wang, X., Zhang, G., Zhao, J., Rong, H., Ipate, F., Lefticaru, Raluca 15 January 2020 (has links)
Yes / To solve the multi-objective mobile robot path planning in a dangerous environment with dynamic obstacles, this paper proposes a modified membraneinspired algorithm based on particle swarm optimization (mMPSO), which combines membrane systems with particle swarm optimization. In mMPSO, a dynamic double one-level membrane structure is introduced to arrange the particles with various dimensions and perform the communications between particles in different membranes; a point repair algorithm is presented to change an infeasible path into a feasible path; a smoothness algorithm is proposed to remove the redundant information of a feasible path; inspired by the idea of tightening the fishing line, a moving direction adjustment for each node of a path is introduced to enhance the algorithm performance. Extensive experiments conducted in different environments with three kinds of grid models and five kinds of obstacles show the effectiveness and practicality of mMPSO. / National Natural Science Foundation of China (61170016, 61373047), the Program for New Century Excellent Talents in University (NCET-11-0715) and SWJTU supported project (SWJTU12CX008); grant of the Romanian National Authority for Scientific Research, CNCSUEFISCDI, project number PN-II-ID-PCE- 2011-3-0688.
195

Risk Aware Path Planning and Dynamic Obstacle Avoidance towards Enabling Safe Robotic Missions

Karlsson, Samuel January 2023 (has links)
This compilation thesis presents two main contributions in path planning and obstacle avoidance, as well as an integration of the proposed modules with other frameworks to enable resilient robotic missions in complex environments.In general, through different types of robotic missions it is important to have a collision tolerant and reliable system, both regarding potential risks from collisions with dynamic and static obstacles, but also to secure the overall mission success.%Particularly, a common trend in the presented work is safety regarding collisions with dynamic and static obstacles, as well as reliable overall systems that are capable of executing missions. The work included in this thesis presents the risk-aware path planner D$^*_+$ that is capable of planning traversable paths for both ground and aerial robots. D$^*_+$ is developed on top of D$^*$-lite with a risk layer close to occupied space, modeling the unknown areas as a risk, and is implemented with a dynamic map to enable updates and adjustments to a changing environment. The risk layer aids in solving two common challenges with path planning for real robots: a) it creates a safety margin that gives free space between the path and obstacles so that robots with the corresponding size can follow the path, and b) it masks smaller holes in walls that occur when building maps from real data. Using a dynamic map makes it possible to use D$^*_+$ for an exploration mission, it also enables for the re-planning of the path if the environment changes for example, if an obstacle suddenly blocks a path, a new path will be planned. D$^*_+$ have been tested in different real-life experiments with both an Unmanned Areal Vehicle (UAV) and a quadruped-legged robot and shown to produce traversable paths in different application scenarios, such as exploration, return to base, and navigation on known maps. This thesis also presents an obstacle avoidance architecture for velocity objects, structured around an object detection and tracking scheme that is combined with non-linear model predictive controller (NMPC) to plan the avoidance maneuver. %that uses a Convolutional Neural Network to detect obstacles that are tracked so they can be avoided by a non-linear model predictive controller (NMPC).In this case, the detection is done with the Convoluitonal Neural Network (CNN) You Only Lock Once v4 (YOLO) where the most certain human is tracked with a Kalman filter, and the velocity of the human is estimated.The proposed scheme models the object motion as constant velocity, which is utilized from the NMPC to plan control inputs for the robot to avoid the identified obstacle. A merit of the approach is that the avoidance maneuver does not only consider the current identification position, but also considers the motion prediction of the object. This avoidance framework proved to be capable to avoid non-cooperative obstacles, such as humans moving towards it.Due to the fact that the avoidance is starting when a future collision is predicted, the avoidance maneuver is started early enough to avoid obstacles with a higher velocity than a classic ``static obstacle'' radius approach can handle. An additional aim of this thesis is to showcase that the proposed contributions can be applied in full robotic missions/frameworks. Thus, this thesis presents a search and rescue mission with a quadruped-legged robot and a UAV on a partially known map to find the location of survivors and other objects of related interest. In this mission, the quadruped-legged robot carries the UAV to the edge of the known map from where it launches the UAV that then explores and detects any survival and other relevant objects.Also, an autonomy solution, based on Boston dynamics' quadruped-legged robot Spot, for enabling a map-based navigation in confined environments has been developed and tested. This Spot solution enables the robot to navigate to a user-selected point, rotate in the desired direction, and instruct the UAV, in the combined search and rescue mission, to take off.
196

Path Planning with Dynamic Obstacles and Resource Constraints

Cortez, Alán Casea 27 October 2022 (has links)
No description available.
197

Coverage Path Planning in Large-scale Multi-floor Urban Environments : with Applications to Autonomous Road Sweeping / Körvägsplanering i storskaliga och flervåniga stadsmiljöer medtillämpningar mot autonom robotsopning

Engelsons, Daniel January 2021 (has links)
Autonomous lawn mowers and floor cleaning robots are today easily accessible and areutilizing well-studied Coverage Path Planning algorithms. They operate in single-floorenvironments that are small with simple geometry compared to general urban environments such as city parking garages, highway bridges or city crossings. A next step for autonomous cleaning is road sweeping of these complex urban environments. In this work,a new Coverage Path Planning approach, Sampled BA* & Inward Spiral , handling this taskwas compared with existing well-performing algorithms BA* and Inward Spiral. The proposed approach combines the strengths of existing algorithms and demonstrates state-of-the-art performance on three large-scale 3D environments. It generated paths with lessrotation, while keeping the length of the path on the same level. For a given starting point,the new approach had consistently lower cost (length + rotation) for all environments. Forrandom starting points, randomness in the new approach caused less robustness, givingsignificantly higher cost. To improve the performance of the algorithms and remove biasfrom manual tuning, the parameters were automatically tuned using Bayesian Optimization. This makes the evaluation more robust and the results stronger.
198

Rapidly-Exploring Random Trees for real-time combined Exploration andPath Planning

Löfgren, Kalle January 2023 (has links)
The use of micro aerial vehicles (MAV) for civilian use such as exploration and inspection of varying structures, equipment and areas have garnered some interest as of late. MAVs have the mobility and agility to traverse three dimensional space quickly and access hard to reach areas where other alternatives would struggle, but a flying platform such as a MAV comes with it’s own set of distinct problems. Almost any collision with the environment results in a complete failure of the platform. Any exploratory framework would need to perform obstacle avoidance and online path planning in a fully unknown environment with low computation times to ensure that the limited battery resources on the MAV is used in the most efficient way. In this thesis the exploratory rapidly-exploring random tree (ERRT) framework will be further optimized and an efficient strategy for finding valid exploration paths which are not in the immediate vicinity of the MAV will be developed and integrated. The method is demonstrated and proven through results from simulations and real life experiments.
199

Robotic Person-Following in Cluttered Environments

Kulp, William R. 27 August 2012 (has links)
No description available.
200

Matlab-based Development of Intelligent Systems for Aerospace Applications

Lafountain, Cody 26 June 2015 (has links)
No description available.

Page generated in 0.033 seconds