• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 31
  • 18
  • 9
  • 8
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 281
  • 281
  • 279
  • 73
  • 31
  • 30
  • 27
  • 25
  • 20
  • 20
  • 20
  • 16
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Development of four novel UWB antennas assisted by FDTD method

Lee, Kwan-Ho 05 January 2005 (has links)
No description available.
212

An Analog for Large-Scale Lacustrine Deposits: 3D Characterization of a Pleistocene Lake Bonneville Spit

Lopez, Eli D. 07 September 2022 (has links)
Ultra-high-resolution subsurface stratigraphy mapped from 3D ground-penetrating radar (GPR) can provide insights into the fine-scale heterogeneity of reservoirs and other geologic features. Analog models derived from 3D GPR aid in understanding reservoir compartmentalization that may be sub-seismic but still affect fluid flow. We integrate 2D profiles and 3D GPR volumes with measured stratigraphic sections from outcrop exposure to characterize the fine-scale stratigraphy of an ancient Lake Bonneville shoreline deposit (locally, circa 20 ka based on carbon-14 dating) in the Great Basin (northwestern Utah). The heterogeneity of the deposit is expressed as multiple discordant patterns, separated by unconformities that likely were influenced by fluctuating lake levels on the lake margin. Although the study site is only ~8,000 square meters in area, the detailed stratigraphic relationships can be scaled up to inform the characterization of larger sedimentary deposits with economic reservoir potential. The sands, gravels, and marls composing the stratigraphy were deposited during the transgressive phase of the pluvial lake, which preserved shoreline features such as spits and barrier bars. We interpret our site as a spit that extended out into the Pleistocene lake, at times connecting to a nearby persistently subaerially exposed island to form a tombolo. The deposited strata are well-exposed in a fortuitously located gravel quarry. The site provides an excellent natural laboratory for detailed 3D imaging due to the mostly flat ground surface (the quarry floor), low-clay, low-salinity, and low-moisture content of the site. The GPR data were acquired with a 200-MHz antenna (for 2D profiles) and a 400-MHz antenna (for 3D volumes). For the latter, the line spacing was about 0.3 meters with a trace spacing of 2.5 cm. The GPR dataset offers high-resolution images of clinoform sequence stratigraphy down to about 3 meters below the surface of the quarry. The vertical resolution (Rayleigh criterion) of the data is about 6 cm (for 3D volumes) and 13 cm (for 2D profiles). Migration collapsed diffractions and re-positioned dipping reflectors correctly. Deconvolution suppressed multiple reflections and tightened the waveforms. Using petroleum industry mapping software, amplitudes were binned into voxels to create precise 3D volumes, which facilitated more accurate geometrical interpretation (e.g., true dip direction of reflectors). Facies associations from stratigraphic sections measured just above the GPR acquisition level (quarry floor) help to describe and reconstruct the depositional history of the spit. The lithologic interpretation of the GPR reflectors is constrained by the correlation (or extrapolation) of the measured sections to the subsurface data volumes. Reflectivity is controlled by variations in porosity and matrix content (e.g., quartz vs. clays vs. calcite). Our study furnishes a model of transgressive deposits in a lacustrine environment and an analog for clastic sediments deposited on a larger scale in such environments.
213

Soil resource heterogeneity and site quality in Southern Appalachian hardwood forests: Impact of decomposing stumps, geology and salamander abundance

Sucre, Eric Brandon 02 December 2008 (has links)
The Southern Appalachian hardwood forests contain a wide diversity of flora and fauna. Understanding processes that affect nutrient availability in these forests is essential for sound forest management. Three interconnected research projects regarding soil resource heterogeneity were designed to increase our understanding of this ecosystem. The objective of these projects were as follows: 1) to examine and quantify the role of decaying stumps in regards to total carbon (C) and nitrogen (N) pools and fine-root dynamics, 2) compare and contrast the use of ground-penetrating radar (GPR) vs. a soil auger for estimating soil depth and site quality and 3) to evaluate how eastern red-backed salamanders (Plethodon cinereus) affect N-availability. For the stump study, results show that decomposing stumps occupy approximately 1.2% of the total soil volume and constitute 4% and 10% of total soil N and C pools. Significant differences in N (p = 0.0114), C (p = 0.0172), microbial biomass C (p = 0.0004), potentially mineralizable N (p = 0.0042), and extractable NH4+ (p = 0.0312) concentrations were observed when compared to mineral soil horizons. In particular, potentially mineralizable N was 2.5 times greater in stump soil than the A-horizon (103 vs. 39 mg kg-1), 2.7 times greater for extractable NH4+ (16 vs. 6 mg kg-1) and almost 4 times greater for MBC (1528 vs. 397 mg kg-1). These measured properties suggest higher N-availability, organic matter turnover and N uptake in stump soil versus the bulk soil. 19% of the total fine root length and 14% of fine root surface area also occurred in the stump soil. The increased fine root length suggests higher concentrations of labile nutrient in the stumps since roots often proliferate in areas with higher nutrient availability. Significant differences occurred in N and C concentrations between all four decay classes and the A-horizon, which validated the use of this system and the need to calculate weighted averages based on the frequency and soil volume influenced by each decay class. In the GPR Study, depth estimations were shallower using a soil auger compared to estimates obtained using GPR across all plots (p = 0.0002; Figure 3.4). On a soil volume basis, this was equivalent to about 3500 m3 of soil per hectare unaccounted for using traditional methods. In regards to using soil depth as a predictor for site quality, no significant relationships were observed with soil depth estimations obtained from the auger (Table 3.3). On the other hand, depth measurements from GPR explained significant amounts of variation across all sites and by physiographic region. Across all sites, soil depth estimates from GPR explained 45.5% of the residual variation (p = 0.001; Table 3.3). When the data were stratified by physiographic region, a higher amount of variation was explained by the regression equations; 85% for the Cumberland Plateau (p = 0.009), 86.7% for the Allegheny Plateau (0.007) and 66.7% for the Ridge and Valley (p = 0.013), respectively (Table 4.2). Results from this study demonstrate how inaccurate current methods can be for estimating soil depth rocky forests soils. Furthermore, depth estimations from GPR can be used to increase the accuracy of site quality in the southern Appalachians. In the salamander study, no significant salamander density treatment or treatment by time effects were observed over the entire study period (p < 0.05). However, when the data were separated by individual sampling periods a few significant treatment by time interactions occurred: 1) during August 2006 for available NH4+ under the forest floor (i.e. horizontal cation membranes; p = 0.001), 2) August and 3) September 2006 for available NH4+ in the A-horizon (p = 0.026), and 4) May 2007 for available NO3- under the forest floor (p = 0.011). As a result of these trends, an index of cumulative N-availability (i.e. NH4+ and NO3-) under the forest floor and in the A-horizon was examined through the entire study period. Cumulative N-availability under the forest floor was consistently higher in the low- and medium-density salamander treatments compared to the high-density treatment. For cumulative N-availability in the A-horizon, a gradient of high to low N-availability existed as salamander density increased. Factors such as a prolonged drought in 2007 may have affected our ability to accurately assess the effects of salamanders on N-availability. We concluded that higher salamander densities do not increase N-availability. Implementing methodologies that accurately account for soil nutrient pools such as stump soil, physical properties such as depth and fauna such as salamanders, increase our understanding of factors that regulate site productivity in these ecosystems. As a result, landscape-level and stand-level management decisions can be conducted more effectively. / Ph. D.
214

Radar Imaging Applications for Mining and Landmine Detection

Abbasi Baghbadorani, Amin 02 August 2022 (has links)
The theme of this dissertation is to advance safety hazard mitigation by detecting and characterizing hidden targets of concern. Ground-penetrating radar (GPR) is used to detect and characterize hidden targets that pose safety hazards at Earth's surface, within shallow soil, and within rock. The resulting images detect unexploded ordnance (UXO) and detect fractures that pose collapse hazards in a mine. Detecting and characterizing fractures and voids within rock prior to excavation can enable mitigation of mine collapse hazards. GPR data were acquired on the wall of a pillar in an underground mine. Strong radar reflections in the field data correlate with fractures and a cave exposed on the pillar walls. Pillar wall roughness was included in migration, a wavefield imaging algorithm, to quantitatively locate fractures and voids and map their spatial relationships within the rock. Quantifying the radar reflection amplitudes enabled mapping the distance between fracture walls. Detecting and characterizing UXO and landmines from a safe distance can enable de-mining. Migration was used to improve GPR imaging for unmanned aerial vehicle (UAV) data acquisitions. Existing algorithms were adapted for UAV flight irregularities and surface topography, and a new algorithm was developed that does not depend on the unknown soil wavespeed. Errors associated with wavespeed and raypath assumptions were quantified. The algorithms were tested with real and synthetic datasets. The improved and new algorithms are more successful than previous algorithms. To detect linear targets at all orientations, fully polarized GPR data are needed. Polarity combinations were investigated to optimize the detection of surface and subsurface small targets and linear targets. Scattering caused by topographic roughness is the primary shallow subsurface noise. For subsurface targets, detection is optimized by migration plus a polarity combination that captures all scattered energy. Strong reflection and scattering from the air-ground boundary can hide surface targets. Detection is optimized by removing the strong isotropic surface scattering, imaging targets by their anisotropic scattering. / Doctor of Philosophy / The theme of this dissertation is to advance safety hazard mitigation by detecting and characterizing hidden targets of concern. Ground-penetrating radar (GPR) is used to detect and characterize hidden targets that pose safety hazards at Earth's surface, within shallow soil, and within rock. The resulting images detect unexploded ordnance (UXO)/landmines and detect fractures that pose collapse hazards in a mine. Detecting and characterizing fractures and voids within rock prior to mining can enable mitigation of mine collapse hazards. GPR data were acquired on the wall of a pillar in an underground mine. Strong radar reflections in the field data correlate with fractures and a cave exposed on the pillar walls. Pillar wall roughness was included in migration, a wavefield imaging algorithm, to quantitatively locate fractures and voids and map their spatial relationships within the rock. Quantifying the radar reflection amplitudes enabled mapping the distance between fracture walls. Detecting and characterizing UXO, landmines from a safe distance can enable de-mining. Migration was used to improve GPR imaging for an unmanned aerial vehicle (drone) data acquisition. Existing algorithms were adapted for drone flight irregularities and surface topography, and a new algorithm was developed that does not depend on the unknown soil properties. Errors associated with the algorithms' assumptions were quantified. The algorithms were tested with real and computer-generated datasets. The improved and new algorithms are more successful than previous algorithms. To detect all targets regardless of their orientation, GPR data need to be acquired with antenna pointing in multiple directions (different polarities). Polarity combinations were investigated to optimize the detection of surface and subsurface small targets and linear targets. Scattering caused by topographic roughness is the primary shallow subsurface noise. For subsurface targets, detection is optimized by migration plus a polarity combination that captures all scattered energy. Strong radar reflection from the air-ground boundary can hide surface targets. Detection is optimized by removing the strong ground surface from the data, and imaging targets by differences in their radar scattering.
215

Ultra-wideband antenna design for microwave imaging applications : design, optimisation and development of ultra-wideband antennas for microwave near-field sensing tools, and study the matching and radiation purity of these antennas within near field environment

Adnan, Shahid January 2012 (has links)
Near field imaging using microwave in medical applications has gain much attention recently as various researches show its high ability and accuracy in illuminating object comparing to the well-known screening tools such as Magnetic Resonance Imaging (MRI), digital mammography, ultrasound etc. This has encourage and motivate scientists continue to exploit the potential of microwave imaging so that a better and more powerful sensing tools can be developed. This thesis documents the development of antenna design for microwave imaging application such as breast cancer detection. The application is similar to the concept of Ground Penetrating Radar (GPR) but operating at higher frequency band. In these systems a short pulse is transmitted from an antenna to the medium and the backscattered response is investigated for diagnose. In order to accommodate such a short pulse, a very wideband antenna with a minimal internal reflection is required. Printed monopole and planar metal plate antenna is implemented to achieve the necessary operating wide bandwidth. The development of new compact printed planar metal plate ultra wide bandwidth antenna is presented. A generalized parametric study is carried out using two well-known software packages to achieve optimum antenna performance. The Prototype antennas are tested and analysed experimentally, in which a reasonable agreement was achieved with the simulations. The antennas present an excellent relative wide bandwidth of 67% with acceptable range of power gain between 3.5 to 7 dBi. A new compact size air-dielectric microstrip patch-antenna designs proposed for breast cancer detection are presented. The antennas consist of a radiating patch mounted on two vertical plates, fed by coaxial cable. The antennas show a wide bandwidth that were verified by the simulations and also confirmed experimentally. The prototype antennas show excellent performance in terms the input impedance and radiation performance over the target range bandwidth from 4 GHz to 8 GHz. A mono-static model with a homogeneous dielectric box having similar properties to human tissue is used to study the interaction of the antenna with tissue. The numerical results in terms the matching required of new optimised antennas were promising. An experimental setup of sensor array for early-stage breast-cancer detection is developed. The arrangement of two elements separated by short distance that confined equivalent medium of breast tissues were modelled and implemented. The operation performances due to several orientations of the antennas locations were performed to determine the sensitivity limits with and without small size equivalent cancer cells model. In addition, a resistively loaded bow tie antenna, intended for applications in breast cancer detection, is adaptively modified through modelling and genetic optimisation is presented. The required wideband operating characteristic is achieved through manipulating the resistive loading of the antenna structure, the number of wires, and their angular separation within the equivalent wire assembly. The results show an acceptable impedance bandwidth of 100.75 %, with a VSWR &lt; 2, over the interval from 3.3 GHz to 10.0 GHz. Feasibility studies were made on the antenna sensitivity for operation in a tissue equivalent dielectric medium. The simulated and measured results are all in close agreement.
216

Caractérisation des hétérogénéités sédimentaires d’une plaine alluviale : Exemple de l’évolution de la Seine supérieure depuis le dernier maximum glaciaire / Characterization of sediment heterogeneities in an alluvial plain : The example of the upper Seine river (France) evolution since the late glacial maximum

Deleplancque, Benoit 22 November 2016 (has links)
Dans le cadre de la gestion de la ressource en eau, la connaissance des hétérogénéités des nappes alluviales représente un enjeu primordial. Ce travail de thèse, qui s’inscrit dans le programme du PIREN-Seine, s’est intéressé à la plaine alluviale de la Bassée, à l’amont de Paris, la plus large plaine alluviale de la Seine.Cette plaine alluviale joue le rôle d’une zone tampon contrôlant les flux entre le réseau de surface et un aquifère régional. Connaître les hétérogénéités sédimentaires est primordial pour la compréhension des écoulements et fait l’objet de ce travail.L’architecture à l’échelle kilométrique des dépôts alluviaux et la chronologie des nappes associées est établie. La géométrie du contact nappe-substrat, une vallée incisée, est estimée par krigeage. Une restitution paléo-hydrologique s’appuie sur les paléo-tracés préservés en surface des nappes alluviales. L’architecture fine des dépôts est restituée à partir de données de sondages converties en propriétés pétrophysiques et d’imagerie géoradar.La plaine de la Bassée correspond à deux terrasses étagées (Saalien terminal et Weichsélien) dans lesquelles sont emboîtées deux autres terrasses (Tardiglaciaire et Holocène).L’estimation de la géométrie du contact alluvions-substrat suggère la présence d’une rupture de pente liée à une érosion régressive durant le Weichsélien. Les faciès des différentes nappes sont assez semblables et dominés par des dépôts de forte perméabilité (sables et graviers). De faibles valeurs de perméabilités sont associées aux faciès de colmatage de chenaux et dépôts en masse.Les résultats obtenus sur la plaine de la Bassée méritent d’être confrontés et validés sur des affluents de la Seine (Marne, Yonne, Oise…) afin de proposer un modèle cohérent à l’échelle du bassin. / In the scope of water resource management, the characterization of alluvial plain architecture and heterogeneity represents a challenge. This PhD work which is part of the PIREN-SEINE program focuses on largest alluvial plain of the River Seine, “La Bassée”, located upstream of Paris.This alluvial plain can be considered as a buffer layer that controls the water fluxes between the fluvial system and the regional aquifers. Determining the sedimentary heterogeneities is essential for the comprehension of fluxes, this is the aim of this work.Kilometric scale architecture of the alluvial deposits and the associated alluvial sheets chronology are established. The geometry of the sheet-bedrock contact, an incised valley, is estimated by kriging interpolation. A paleohydrological restitution is based on the paleochannels preserved at the top of the alluvial sheets. The fine scale architecture of deposits is restored from sampling data converted into petrophysics properties and ground-penetrating radar acquisitions.The alluvial plain of La Bassée corresponds to two terraces (terminal Saalian and Weichselian) in which two other terraces are staircased (Late Glacial and Holocene).The estimated sheet-bedrock contact geometry suggests the presence of a knick-point related to a regressive erosion during the Weichselian. Sedimentary facies are very similar from one alluvial sheet to another, and are dominated by high permeability deposits (sand and gravel). Low permeability facies are associated to channel plugs and mass transport deposits.The infilling model of La Bassée region obtained in this study should be compared and validated on the River Seine tributaries (Marne river, Yonne river, Oise river…) to propose a coherent model at the basin scale.
217

Biogenic gas dynamics in peat soil blocks using ground penetrating radar: a comparative study in the laboratory between peat soils from the Everglades and from two northern peatlands in Minnesota and Maine

Unknown Date (has links)
Peatlands cover a total area of approximately 3 million square kilometers and are one of the largest natural sources of atmospheric methane (CH4) and carbon dioxide (CO2). Most traditional methods used to estimate biogenic gas dynamics are invasive and provide little or no information about lateral distribution of gas. In contrast, Ground Penetrating Radar (GPR) is an emerging technique for non-invasive investigation of gas dynamics in peat soils. This thesis establishes a direct comparison between gas dynamics (i.e. build-up and release) of four different types of peat soil using GPR. Peat soil blocks were collected at peatlands with contrasting latitudes, including the Everglades, Maine and Minnesota. A unique two-antenna GPR setup was used to monitor biogenic gas buildup and ebullition events over a period of 4.5 months, constraining GPR data with surface deformation measurements and direct CH4 and CO2 concentration measurements. The effect of atmospheric pressure was also investigated. This study has implications for better understanding global gas dynamics and carbon cycling in peat soils and its role in climate change. / by Anastasija Cabolova. / Thesis (M.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
218

Relações entre morfoestratigrafia e hidrologia na formação das turfeiras da Serra do Espinhaço Meridional (MG) / Relationship between morphology, stratigraphy and hydrology in the formation of peatlands in the Serra do Espinhaço Meridional (MG)

Campos, José Ricardo da Rocha 30 April 2014 (has links)
Na Serra do Espinhaço Meridional, o predomínio de uma litologia quartzítica, associada a processos tectônicos diversos, proporcionou a formação de um complexo sistema de falhas, fraturas e dobramentos que, aparentemente, controlam a sedimentação quaternária e a rede de drenagem. Esta última, por sua vez, possui importante papel na formação de ambientes hidromórficos e na formação de turfeiras. Baseado na hipótese de que as turfeiras se formam em decorrência do controle exercido por estruturas quartzíticas sobre a rede de drenagem, gerando hidromorfismo, este trabalho objetiva estudar a relação entre morfoestratigrafia, hidrologia e os processos de formação das turfeiras a partir de uma análise espacial do meio físico, da configuração do embasamento rochoso, analisado pelo Radar de Penetração do solo (GPR), e de mudanças climáticas ocorridas no Pleistoceno e Holoceno. A análise do meio físico foi realizada a partir de uma compilação de cartas geológicas da área e do mapeamento das principais feições geomorfológicas, analisadas a partir de modelos gerados em sistemas de informação geográfica (SIG). A partir de uma análise detalhada dos produtos supracitados, foram selecionadas cinco microbacias hidrográficas com padrões geomorfológicos favoráveis a formação de turfeiras (planícies quartzíticas, vales suspensos, vales encaixados e vales alongados ladeado por vertentes suaves). Foram realizadas análises das geoformas e da drenagem por estereoscopia e transeções com o GPR. A cronologia dos eventos, bem como, a estratigrafia e a origem da MO foram analisadas por datações por C14, granulometria e fracionamento isotópico da MO, respectivamente. As turfeiras se formam, preferencialmente, em depressões formadas sobre litotipos mais susceptíveis ao intemperismo confinados entre quartzitos altamente resistentes onde a umidade tende a ser mantida. Dados do GPR mostram que as turfeiras ocorrem também associadas ao excesso de umidade mantido por soleiras quartzíticas em subsuperfície nos vales alongados adaptados a falhas e nos vales suspensos. Os soterramentos de turfeiras foram favorecidos por lineamentos tectônicos de direção E - W que controlam parcialmente a drenagem e a sedimentação na porção mediana da área. As variações nos processos sedimentares apresentam forte relação com mudanças climáticas ocorridas no Holoceno e Pleistoceno. Pelo menos seis períodos de mudanças climáticas foram observadas: entre 30.251 a 12.418 anos AP o clima favoreceu a deposição de MO; de 12.418 a 7.890 anos AP os processos erosivos foram mais intensos; de 7.890 a 3.280 anos AP o clima quente e úmido favoreceu o deposito de MO e, nos últimos 2.590 anos AP, o clima foi semelhante ao atual com 3 períodos breves favoráveis a deposição de turfa observado por camadas discretas de MO. / The morphology of the Serra do Espinhaço Meridonal is associated with various tectonic processes. In combination with the prevalence of a quartzite lithology this caused the formation of a complex system of faults, fractures and folds that control the Quaternary sedimentation and drainage network. Impeded drainage cause hydromorphic environments in which organic matter (OM) may accumulate, causing the formation of peatlands. Based on the hypothesis that the formation of peatlands in this area is controlled by impeded drainage of quartzite structures, the aims of this thesis were (i) to study the relationship between morphology, stratigraphy and hydrology, (ii) to determine the influence of this relationship on the formation of peatlands, and (iii) to interpret this in the context of climatic changes in the Pleistocene and Holocene. This will be done by a spatial analysis of the physical environment of five watersheds. The watersheds were selected based on geomorphological patterns that favor peat formation, including quartzite plains, hanging valleys and elongated valleys flanked by gentle slopes. The configuration of the rocky basement will be determined with Ground Penetrating Radar (GPR), a compilation of geological maps of the area will be made, and the main geomorphological features will be examined using Geographic Information Systems (GIS) models. The chronology, stratigraphy and origin of OM were analyzed by C14 dating, particle size and isotopic fractionation, respectively. The results indicate that the peatlands are preferentially formed on rock types other than quartzite, which are occasionally located between the highly resistant quartzite rocks. Because this material is more susceptible to weathering, depressions were formed in which water tends to accumulate, thereby providing conditions that favor peat formation. However, GPR data showed that peatlands were also formed on quartzite rocks when the subsurface showed elongated valleys adapted to crashes and hanging valleys. Burried peat was found at some places, which was related to tectonic lineament patterns with an east-west direction. These tectonic lineament patterns partially controlled the drainage and sedimentation in the central part of the area. Variation in sedimentary processes (peat formation vs. mineral influx/erosion) was found to be strongly related to climatic changes in the Holocene and Pleistocene. At least six periods of climate change were observed: between 30.251 and 12.418 yr BP climate favored the deposition of OM, between 12,418 and 7890 yr BP erosion processes were more intense; between 7.890 - 3.280 yr BP a hot and humid climate favored peat formation, and the last 2.590 years the climate was similar to the current favorable with three brief periods of peat deposition were observed.
219

Estudo das propriedades geotécnicas de solos residuais não saturados de Ubatuba (SP). / Study of the geotechnical properties of unsaturated residual soils of Ubatuba (SP).

Mendes, Rodolfo Moreda 03 October 2008 (has links)
A presente tese de doutoramento versa sobre o estudo das propriedades geotécnicas de solos residuais não saturados ocorrentes no município de Ubatuba, litoral norte do Estado de São Paulo. O estudo das propriedades geotécnicas foi realizado a partir de uma abordagem macro e micromorfológica, buscando estabelecer a relação existente entre a água presente no solo e sua variação sazonal. Os procedimentos e técnicas utilizadas permitiram diferenciar os horizontes de intemperismo quanto à microestrutura e porosidade, bem como caracterizar seus comportamentos físico e hídrico. Os ensaios geotécnicos, in situ e em laboratório, forneceram informações importantes sobre as propriedades dos materiais, tais como: índices físicos, distribuição granulométrica, limites de Atterberg, curvas de retenção de água e condutividade hidráulica saturada. Os dados registrados pelos equipamentos instalados no campo (pluviômetros, sensores GMS e FDR) permitiram avaliar a relação existente entre os eventos pluviométricos com a distribuição de umidade e sucção matricial ao longo dos perfis de alteração. Além disso, utilizouse metodologia geofísica de forma inédita na geotecnia brasileira para a determinação de perfis de umidade em solos residuais tropicais. Em termos gerais, os resultados obtidos permitiram estabelecer algumas relações entre as propriedades mecânicas e hidráulicas e as peculiaridades micromorfológicas dos horizontes de solos. Os resultados desse trabalho poderão ainda indicar áreas prioritárias para o monitoramento das variáveis climatológicas e geotécnicas, podendo fornecer apreciáveis subsídios para um futuro aperfeiçoamento dos parâmetros técnicos utilizados em Planos Preventivos de Defesa Civil (PPDC). / This doctoral thesis focusing on the study of the geotechnical properties of unsaturated residual soils occurring in the municipal district of Ubatuba, north coast of the State of Sao Paulo. The study of geotechnical properties was conducted from a macro and micromorfology approach, seeking to establish the relationship between the water present in the residual soil and its seasonal variations. The procedures and techniques enabled differentiate the horizons of weathering in relation to the microstructure and porosity, and characterize its physical-hydraulic behaviours. The laboratory and in situ geotechnical tests, provided important information about the properties of materials, such as: physical index, grain-size distribution, Atterberg limits, water retention curve and saturated hydraulic conductivity. The data registered by equipments installed in the field (pluviometers, FDR and GMS sensors) enabled to evaluate the relationship between the rainfall events with the distribution of moisture and suction matrix along the soil profiles. In addition, was used geophysical methodology in order unprecedented in brazilian geotechnical for the determination of moisture profiles in residual tropical soils. Overall, the results allowed establish some relationship between the hydraulic and mechanical properties and the micromorphological peculiarities of the horizons of soils. The results of this study may also indicate priority areas for monitoring the climatological and geotechnical variables, and may provide appreciable subsidies for a future improvement of the technical parameters used in Civil Defense Prevention Plans (PPDC).
220

Relações entre morfoestratigrafia e hidrologia na formação das turfeiras da Serra do Espinhaço Meridional (MG) / Relationship between morphology, stratigraphy and hydrology in the formation of peatlands in the Serra do Espinhaço Meridional (MG)

José Ricardo da Rocha Campos 30 April 2014 (has links)
Na Serra do Espinhaço Meridional, o predomínio de uma litologia quartzítica, associada a processos tectônicos diversos, proporcionou a formação de um complexo sistema de falhas, fraturas e dobramentos que, aparentemente, controlam a sedimentação quaternária e a rede de drenagem. Esta última, por sua vez, possui importante papel na formação de ambientes hidromórficos e na formação de turfeiras. Baseado na hipótese de que as turfeiras se formam em decorrência do controle exercido por estruturas quartzíticas sobre a rede de drenagem, gerando hidromorfismo, este trabalho objetiva estudar a relação entre morfoestratigrafia, hidrologia e os processos de formação das turfeiras a partir de uma análise espacial do meio físico, da configuração do embasamento rochoso, analisado pelo Radar de Penetração do solo (GPR), e de mudanças climáticas ocorridas no Pleistoceno e Holoceno. A análise do meio físico foi realizada a partir de uma compilação de cartas geológicas da área e do mapeamento das principais feições geomorfológicas, analisadas a partir de modelos gerados em sistemas de informação geográfica (SIG). A partir de uma análise detalhada dos produtos supracitados, foram selecionadas cinco microbacias hidrográficas com padrões geomorfológicos favoráveis a formação de turfeiras (planícies quartzíticas, vales suspensos, vales encaixados e vales alongados ladeado por vertentes suaves). Foram realizadas análises das geoformas e da drenagem por estereoscopia e transeções com o GPR. A cronologia dos eventos, bem como, a estratigrafia e a origem da MO foram analisadas por datações por C14, granulometria e fracionamento isotópico da MO, respectivamente. As turfeiras se formam, preferencialmente, em depressões formadas sobre litotipos mais susceptíveis ao intemperismo confinados entre quartzitos altamente resistentes onde a umidade tende a ser mantida. Dados do GPR mostram que as turfeiras ocorrem também associadas ao excesso de umidade mantido por soleiras quartzíticas em subsuperfície nos vales alongados adaptados a falhas e nos vales suspensos. Os soterramentos de turfeiras foram favorecidos por lineamentos tectônicos de direção E - W que controlam parcialmente a drenagem e a sedimentação na porção mediana da área. As variações nos processos sedimentares apresentam forte relação com mudanças climáticas ocorridas no Holoceno e Pleistoceno. Pelo menos seis períodos de mudanças climáticas foram observadas: entre 30.251 a 12.418 anos AP o clima favoreceu a deposição de MO; de 12.418 a 7.890 anos AP os processos erosivos foram mais intensos; de 7.890 a 3.280 anos AP o clima quente e úmido favoreceu o deposito de MO e, nos últimos 2.590 anos AP, o clima foi semelhante ao atual com 3 períodos breves favoráveis a deposição de turfa observado por camadas discretas de MO. / The morphology of the Serra do Espinhaço Meridonal is associated with various tectonic processes. In combination with the prevalence of a quartzite lithology this caused the formation of a complex system of faults, fractures and folds that control the Quaternary sedimentation and drainage network. Impeded drainage cause hydromorphic environments in which organic matter (OM) may accumulate, causing the formation of peatlands. Based on the hypothesis that the formation of peatlands in this area is controlled by impeded drainage of quartzite structures, the aims of this thesis were (i) to study the relationship between morphology, stratigraphy and hydrology, (ii) to determine the influence of this relationship on the formation of peatlands, and (iii) to interpret this in the context of climatic changes in the Pleistocene and Holocene. This will be done by a spatial analysis of the physical environment of five watersheds. The watersheds were selected based on geomorphological patterns that favor peat formation, including quartzite plains, hanging valleys and elongated valleys flanked by gentle slopes. The configuration of the rocky basement will be determined with Ground Penetrating Radar (GPR), a compilation of geological maps of the area will be made, and the main geomorphological features will be examined using Geographic Information Systems (GIS) models. The chronology, stratigraphy and origin of OM were analyzed by C14 dating, particle size and isotopic fractionation, respectively. The results indicate that the peatlands are preferentially formed on rock types other than quartzite, which are occasionally located between the highly resistant quartzite rocks. Because this material is more susceptible to weathering, depressions were formed in which water tends to accumulate, thereby providing conditions that favor peat formation. However, GPR data showed that peatlands were also formed on quartzite rocks when the subsurface showed elongated valleys adapted to crashes and hanging valleys. Burried peat was found at some places, which was related to tectonic lineament patterns with an east-west direction. These tectonic lineament patterns partially controlled the drainage and sedimentation in the central part of the area. Variation in sedimentary processes (peat formation vs. mineral influx/erosion) was found to be strongly related to climatic changes in the Holocene and Pleistocene. At least six periods of climate change were observed: between 30.251 and 12.418 yr BP climate favored the deposition of OM, between 12,418 and 7890 yr BP erosion processes were more intense; between 7.890 - 3.280 yr BP a hot and humid climate favored peat formation, and the last 2.590 years the climate was similar to the current favorable with three brief periods of peat deposition were observed.

Page generated in 0.0286 seconds