Spelling suggestions: "subject:"[een] POLYURETHANE"" "subject:"[enn] POLYURETHANE""
111 |
Effet de l'exsudation des additifs sur les propriétés d'usage d'un dispositif médical implantable (cathéter) / Effect of the blooming of additives on the use properties of an implantable medical device (catheter)Nouman, Micheal 10 March 2017 (has links)
L'état de surface est l'un des paramètres les plus importants pour déterminer la biocompatibilité d'un dispositif médical implantable, tout changement à la surface une fois en contact avec les tissus corporels peut avoir un impact sur la réponse biologique (cytotoxicité, inflammation, irritation, thrombose ... etc.). Pendant le stockage, l’exsudation des additifs peut se produire à la surface des polymères et modifier leurs propriétés. Dans cette étude, nous utilisons du polyuréthane à base de cathéter (Pellethane®), en raison de ses nombreuses applications dans le domaine des dispositifs médicaux, pour évaluer l'impact d’exsudation des additifs sur la biocompatibilité. L'impact des traitements de stérilisation et d'oxydation sur le phénomène d’exsudation a été étudié. L'étude a été réalisée sur du polyuréthane utilisé dans la fabrication de cathéters sur lesquels l’exsudation de cristaux d’additifs a déjà été observée. La stérilisation par rayonnements ionisants (bêta, gamma) a été réalisée sur ce matériau et les échantillons ont été soumis à différents types de processus d'oxydation (UV, H2O2 et action des macrophages). La viabilité des cellules endothéliales a été étudiée. Une évaluation préliminaire de l'hémocompatibilité a été réalisée par la mesure de l'hémolyse du sang total, ainsi que par l'adhésion des plaquettes en contact avec les différents échantillons de PU. L'étude de la production pro-inflammatoire d'IL-alpha; et de TNF-alpha; par des macrophages en contact avec des échantillons a également été rapportée. / Surface state is one of the most important parameter determining the biocompatibility of animplantable medical device, any change on the surface once in contact with body tissues canimpact the biological response (Cytotoxicity, inflammation, irritation, thrombosis …etc). During storage, the blooming of additives may occur on the surface of polymers and modify their properties. In this study, we use (Pellethane®) catheter-based polyurethane, because of its many applications in the field of medical devices, to evaluate the impact of additives blooming on the biocompatibility. The impact of sterilizing and oxidation treatments on blooming was studied. The study was realized on polyurethane used in the fabrication of catheters on which the blooming of antioxidant crystals has been previously observed. Sterilization by ionizing radiations (beta, gamma) was performed on this material and samples were submitted to different kinds of oxidation process (UV, H2O2 and macrophages action). Endothelial cells viability was studied. A preliminary haemocompatibility evaluation was performed through the measurement of whole blood hemolysis, as well as platelet adhesion in contact with the different PU samples. The study of the pro-inflammatory IL-alpha; and TNF-alpha; production by macrophages in contact with samplesis also reported.
|
112 |
Struktur-Eigenschafts-Beziehungen in der Leistungsfähigkeit von phosphorhaltigen Flammschutzmitteln für Polyurethan-SchäumeLenz, Johannes 02 September 2021 (has links)
Polyisocyanurat (PIR)-Schaumstoffe werden aufgrund ihrer geringen Wärmeleitfähigkeit, der hohen Druckstabilität bei geringer Dichte und der geringen Wasserabsorption in vielen Bereichen eingesetzt. Zu den Anwendungsgebieten zählen Isolierungen und der Gebäudebau. In diesen Anwendungsbereichen ist eine flammhemmende Wirkung der verwendeten Materialien gefordert.
PIR-Schäume an sich zählen jedoch zu den leicht entflammbaren Stoffen. Ohne den Einsatz von Flammschutzmitteln wäre somit die vielseitige Anwendung von PIR nicht möglich.
In der Industrie wird bislang als „state-of-the-art“-Flammschutzmittel für PIR-Schäume das Additiv Tris(2-chloroisopropyl)phosphat (TCPP) verwendet. Nachteil des TCPPs und aller anderen halogenhaltigen Flammschutzmittel sind die beim Verbrennen freigesetzten korrosiven und toxischen Gase. Aufgrund dieses Gesundheitsaspektes, staatlicher Regulierungen und öko-Zertifizierungen geht der Trend zu halogenfreien Flammschutzmitteln. Zu vielversprechenden Alternativen zählen an dieser Stelle phosphorhaltige Verbindungen.
In dieser Arbeit wurde eine Reihe von Phosphonat-basierten Additiven für PIR synthetisiert. Als Grundlage dieser Additive diente das Phosphonat Dibenzo[d,f][1,3,2]dioxa-phosphepin-6-oxid (BPPO). Durch eine Phospha-Michael-Addition des BPPOs an ungesättigte Verbindungen wurden Additive gewonnen, welche der Schaumformulierung zugesetzt werden konnten. Neben ungesättigten Verbindungen wurden auch Aldehyde mit BPPO umgesetzt, wobei dazu die Pudovik-Reaktion genutzt wurde. Hierdurch konnten BPPO-Derivate erzeugt werden, welche OH-Gruppen aufweisen. Diese können durch eine Addition an das Polyisocyanat kovalente Bindungen zum Polymer ausbilden, was ein Herausmigrieren der Additive verhindert.
Durch diese beiden Reaktionsmechanismen wurden zwei Gruppen an BPPO-Derivaten synthetisiert, welche bislang noch nicht in der Literatur als Flammschutzmittel beschrieben worden sind. Durch die Addition verschiedener organischer Verbindungen wurde die chemische Struktur dieser BPPO-Derivate systematisch variiert. Durch diese Variation und anschließende Untersuchungen konnten Struktur-Eigenschafts-Beziehungen aufgestellt werden.
Nach der erfolgreichen Synthese wurden die P-haltigen Verbindungen in PIR-Schäumen verwendet. Parallel dazu wurden Benchmark-Schäume hergestellt, die Flammschutzmittel aus der Literatur und der Industrie enthielten. Die physikalischen Eigenschaften der so hergestellten Schäume wurden anschließend untersucht. Ebenso wurde das thermische Abbauverhalten sowie das Brandverhalten analysiert. Die Ergebnisse wurden mit denen der Benchmark-Schäume verglichen und liefern einen wesentlichen Beitrag zum Verständnis der grundlegenden Struktur-Eigenschafts-Beziehungen im Flammschutz von Polyurethanen.
Wie aus der Literatur bereits bekannt, ist die Wirkungsweise phosphorhaltiger Flammschutzmittel abhängig von der Oxidationszahl des Phosphoratoms. Bei höheren Oxidationszahlen findet die flammhemmende Wirkung in der Festphase und bei niedrigeren Oxidationszahlen in der Gasphase statt. Dieser Trend konnte durch den vergleichenden Einsatz von chemisch ähnlichen Phosphinaten, Phosphonaten und Phosphaten bestätigt werden. Ein weiterer wichtiger Einflussfaktor ist die Bindung des Additivs im Schaum. Des Weiteren konnte in dieser Arbeit gezeigt werden, dass Verbindungen mit aromatischen Gruppen sich positiv auf das Brandverhalten auswirken.
Diese Ergebnisse tragen wesentlich zum Verständnis der grundlegenden Struktur-Eigenschafts-Beziehungen beim Flammschutz von Polyurethanen bei. Dies wiederum ermöglicht Vorhersagen über das Verhalten von phosphorhaltigen Additiven im Schaum und deren Auswirkungen auf den Flammschutz. Ebenso ist es möglich, mit den gewonnenen Erkenntnissen bestehende Additive durch die Anpassung ihrer chemischen Struktur zu optimieren oder für ein spezielles Einsatzgebiet neu zu entwickeln. Mit TA-BPPO als Additiv konnten zudem bessere Flammschutzeigenschaften erzielt werden als mit dem analogen Derivat des DOPO.
Abschließend lässt sich sagen, dass mit BPPO und seinen Derivaten eine wirksame Alternative zu dem bislang verwendeten Triphenylphosphat gefunden wurde. Die erhaltenen Resultate legen eine Anwendung in der Industrie nahe. / Polyisocyanurate (PIR) foams are used in many areas due to their low thermal conductivity, high pressure stability at low density and low water absorption. Applications include insulation, building construction and the automotive industry. In these applications, the materials used, need to have a flame retardant effect. PIR foams themselves are highly flammable materials. Without the use of flame retardants, the versatile application of PIR would not be possible. In industry the additive tris(2-chloroisopropyl)phosphate (TCPP) is currently used as a ”state-of-the-art“flame retardant for PIR foams. The disadvantage of TCPP and all other halogen-containing flame retardants are the corrosive and toxic gases released during combustion. Due to this health aspect, governmental regulations and eco-certifications the trend leads towards halogen-free flame retardants . Promising alternatives at this point include phosphorous-containing compounds. In this work a number of phosphonate-based additives for PIR were synthesized. The phosphonate dibenzo[d,f][1,3,2]dioxa-phosphepine-6-oxide (BPPO) served as the basis for these additives. Additives were obtained by Phospha-Michael addition of BPPO to unsaturated compounds, which could be added to the foam formulation. Besides unsaturated compounds, aldehydes were also reacted with BPPO using the Pudovik reaction. By this means, BPPO derivatives with OH groups could be produced. These can form covalent bonds to the polymer by addition to the polyisocyanate, which prevents the additives from migrating out. By these two reaction mechanisms two groups of BPPO derivatives were synthesized, which have not yet been described as flame retardants in the literature. By adding different organic compounds, the chemical structure of these BPPO derivatives was systematically varied. By this variation and subsequent investigations structure-property relationships could be established.
After successful synthesis, the P-containing compounds were used in PIR foams. In parallel, benchmark foams containing flame retardants from literature and industry were produced. The physical properties of the foams produced in this way were then investigated. The thermal degradation behaviour as well as the fire behaviour was also analysed. The results were compared with those of the benchmark foams and provide a significant contribution to the understanding of the basic structure-property relationships in the flame retardancy of polyurethanes.
As already known from the literature, the mode of action of phosphorous-containing flame retardants depends on the oxidation number of the phosphorus atom. At higher oxidation numbers the flame retardant effect takes place in the solid phase and at lower oxidation numbers in the gas phase. This trend was confirmed by the comparative use of chemically similar phosphinates, phosphonates and phosphates. Another important influencing factor is the binding of the additive in the foam. Furthermore it could be shown in this work that compounds with aromatic groups have a positive effect on the fire behavior. These results contribute significantly to the understanding of the basic structure-property relationships in flame retardancy of polyurethanes. This in turn allows predictions to be made about the behavior of phosphorus-containing additives in the foam and their effects on flame retardancy. It is also possible to optimize existing additives by adapting their chemical structure, or to develop new additives for a specific application. With TA-BPPO as an additive, it was also possible to achieve better flame retardant properties than with the analogue derivative of DOPO.In conclusion, BPPO and its derivatives are an effective alternative to the triphenyl phosphateused so far. The results obtained suggest an application in industry.
|
113 |
Synthèse et caractérisation de copolymères Silicone/Polyuréthane réticulés pour l'encapsulation de modules de puissance / Synthesis and characterisation of crosslinked Silicone/Polyurethane copolymers for the encapsulation of power modulesColin, Charlotte 27 June 2017 (has links)
L’électronique embarquée, notamment les modules de puissance, permet la gestion de l’énergie électrique et donc le développement de véhicules « décarbonés ». Toutefois, en vue d’être positionnés près du moteur thermique, ces composants électroniques devront résister à des environnements très divers et parfois à de sévères contraintes (humidité, agression chimique (huiles), vibrations…). Or, les matériaux d’encapsulation qui les protègent ne sont pas, aujourd’hui, assez performants pour répondre à ces nouvelles contraintes. Ainsi, le but de ces travaux de thèse est donc de développer de nouveaux polymères d’encapsulation. Pour cela, deux types de copolymères Silicone/Polyuréthane (Si/PU) réticulés ont été synthétisés, sans solvant, et avec des temps de polymérisation courts.Une première série de matériaux Si/PU contenant entre 55 et 76%m de motif silicone, a été synthétisée par polyaddition alcool-isocyanate à partir de précurseurs silicone, synthétisés ou commerciaux, et d’un pluriisocyanate, en présence d’un catalyseur. Une seconde série de copolymères Silicone/Polyhydroxyuréthane (Si/PHU) contenant 26 et 61%m de motif silicone a été obtenue sans isocyanate et sans catalyseur, à partir de poly(diméthylsiloxane) biscyclocarbonate et d’une triamine.Les propriétés mécaniques, thermiques et le caractère hydrophobe de tous ces matériaux ont été évalués. Dans le but d’améliorer les propriétés thermiques et de diminuer le coût de la résine d’encapsulation, des charges inorganiques ont été incorporées à certains polymères Si/PU.Les matériaux les plus intéressants ont été testés comme encapsulant dans des modules de puissance et les premières mesures électriques au cours de cyclages thermiques sont très prometteuses. / Embedded electronics, particularly power modules, allows management of electric energy and therefore development of “carbon-free” vehicle. However, these electronic components, will shortly be located near heat engine automotive, and they must withstand various environments and sometimes, hard stresses (humidity, chemical aggression (oil), vibrations…). But actual encapsulation materials are not today efficient enough to match with these future imposed stresses. Thus, the aim of this work is to develop new encapsulation polymers. For this, two types of crosslinked Silicone/Polyurethane (Si/PU) copolymers were “solvent-free” synthesized and with short polymerization times.A first series of materials Si/PU containing between 55 and 76%wt silicone units were synthesized by alcool-iscyanate polyaddition from silicone precursor, synthesized or commercial, and a pluri-isocyanate, in the presence of catalyst. A second series of copolymers, Silicone/Polyhydroxyurethane (Si/PHU) containing 26 and 61%wt silicone units, was obtained without isocyanate or catalyst from poly(dimethylsiloxane) biscyclocarbonate and a triamine.Mechanical and thermal properties as well as hydrophobic character of all materials were evaluated. In order to improve thermal properties and decrease the cost of encapsulation resin, inorganic fillers were blended in some of Si/PU polymers.The most interesting materials were tested as encapsulant in power modules, and the first electrical measurements during thermal cyclings were very promising
|
114 |
Investigation of Synthesis and Characterizaton of Polyester Polypiperazine Polyurthane MetallopolymerKornokovich, Anthony David 13 July 2022 (has links)
No description available.
|
115 |
DEVELOPMENT AND CHARACTERIZATION OF L-TYROSINE BASED POLYURETHANES FOR TISSUE ENGINEERING APPLICATIONSSarkar, Debanjan 02 October 2007 (has links)
No description available.
|
116 |
Development of solid polymer electrolytes of polyurethane and polyether-modified polysiloxane blends with lithium saltsWang, Shanshan January 2007 (has links)
No description available.
|
117 |
Shape Memory Polyurethane NanocompositesCao, Feina 12 May 2008 (has links)
No description available.
|
118 |
Polyester Based Hybrid Organic CoatingsWang, Xiaojiang 20 July 2012 (has links)
No description available.
|
119 |
Thermoplastic Polyurethane: A Complex Composite SystemRohm, Kristen Nicole 01 September 2021 (has links)
No description available.
|
120 |
Development and Extrapolation of an Undergraduate Laboratory Experiment to an Elastomeric Spinal Muscular Atrophy BraceBrose, Richard Sterling 01 June 2011 (has links) (PDF)
Ever since the advent of polymer science, polyurethanes have played a huge role in the industrial world. They have been used in endless applications from furniture padding to aircraft coatings, to binders for insensitive munitions. It is therefore important that the chemistry of polyurethanes is well understood as well as the ability to draw relationships between the raw materials selected and the end-use properties of the polymer. Because of the multitude of practical applications, the development of an undergraduate polymer chemistry laboratory focused on polyurethane elastomers is developed and described herein. Polymer chemistry students are exposed to hydroxyterminated polybutadiene (HTPB) polyols as well as di- and multifunctional isocyanates for use in a tin-catalyzed reaction. The effect of catalyst concentration and crosslinking agent on cure time, prepolymer structure on end-use properties, and the effect of crosslink density on physical properties are explored. Students also receive a very important introduction to statistical experimental design. They learn when using statistical experimental design is necessary, and they learn how to manipulate, analyze, and interpret data using two-way ANOVA in Minitab.
The development of the lab experiment also led to extrapolating the use of polyurethane elastomers into a new application, the development of a polyurethane spinal muscular atrophy (SMA) brace. SMA is a neurodegenerative disorder that results in the mutation or deletion of the spinal motor neuron gene, resulting in the atrophy of a subject’s spine muscles throughout the continuation of their life. These patients are therefore forced to wear a brace for the entirety of their lives. The current brace technology in use by SMA patients is limited by the fact that SMA affects a very small amount of the population and therefore it is not cost-effective for industry to develop a brace technology designed for these patients. Scoliosis braces such as thoracolumbrosacral orthoses (TLSOs) are too hard and too uncomfortable for patients with SMA; therefore, the polyurethane elastomer was extrapolated to develop a brace with more flexibility and more durability. Two generations of polyurethane elastomeric brace were developed and evaluated by a subject and family with an SMA background. The brace is a much improved technology to the TLSO braces and provides more flexibility, more mobility, greater comfort, and superior modularity to the old technology. An instruction manual is also included with a step-by-step process of how to reproduce the brace.
|
Page generated in 0.0294 seconds