• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 16
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 30
  • 25
  • 18
  • 15
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Using Event logs and Rapid Ethnographic Data to Mine Clinical Pathways

January 2020 (has links)
abstract: Background: Process mining (PM) using event log files is gaining popularity in healthcare to investigate clinical pathways. But it has many unique challenges. Clinical Pathways (CPs) are often complex and unstructured which results in spaghetti-like models. Moreover, the log files collected from the electronic health record (EHR) often contain noisy and incomplete data. Objective: Based on the traditional process mining technique of using event logs generated by an EHR, observational video data from rapid ethnography (RE) were combined to model, interpret, simplify and validate the perioperative (PeriOp) CPs. Method: The data collection and analysis pipeline consisted of the following steps: (1) Obtain RE data, (2) Obtain EHR event logs, (3) Generate CP from RE data, (4) Identify EHR interfaces and functionalities, (5) Analyze EHR functionalities to identify missing events, (6) Clean and preprocess event logs to remove noise, (7) Use PM to compute CP time metrics, (8) Further remove noise by removing outliers, (9) Mine CP from event logs and (10) Compare CPs resulting from RE and PM. Results: Four provider interviews and 1,917,059 event logs and 877 minutes of video ethnography recording EHRs interaction were collected. When mapping event logs to EHR functionalities, the intraoperative (IntraOp) event logs were more complete (45%) when compared with preoperative (35%) and postoperative (21.5%) event logs. After removing the noise (496 outliers) and calculating the duration of the PeriOp CP, the median was 189 minutes and the standard deviation was 291 minutes. Finally, RE data were analyzed to help identify most clinically relevant event logs and simplify spaghetti-like CPs resulting from PM. Conclusion: The study demonstrated the use of RE to help overcome challenges of automatic discovery of CPs. It also demonstrated that RE data could be used to identify relevant clinical tasks and incomplete data, remove noise (outliers), simplify CPs and validate mined CPs. / Dissertation/Thesis / Masters Thesis Computer Science 2020
22

Toward Improved Traceability of Safety Requirements and State-Based Design Models

Alenazi, Mounifah 11 June 2021 (has links)
No description available.
23

Získávání znalostí z procesních logů / Knowledge Discovery from Process Logs

Kluska, Martin January 2019 (has links)
This Master's describes knownledge discovery from process logs by using process mining algorithms. Chosen algorithms are described in detail. These aim to create process model based on event log analysis. The goal is to design such components, which would be able to import the process and run the simulations. Results from components can be used for short term planning.
24

Matrix of guidelines to improve the understandability of non-expert users in process mining projects

Teran, Bryhan Chise, Bravo, Jimmy Manuel Hurtado, Armas-Aguirre, Jimmy, Mayorga, Santiago Aguirre 01 June 2020 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / Process Mining is a discipline that recognizes three types of analysis: Discovery, monitoring, and process improvement. Organizations are focusing on redesigning and automating their major processes, according to a report published in 2018 [1]. In this way, a challenge n process mining is to show the results of the process analysis in a way that is understandable to non-expert users. Therefore, this research paper introduces a matrix of guidelines to guide process mining specialists/tool developers to improve the results of the analysis in process mining projects. This matrix is composed of 2 study fields that throughout the literature have been merging their virtues. First, process mining under 2 of its 3 types of projects: (1) based on objectives and (2) based on questions. The last type is based on data (exploratory analysis). Second, visualization of data with its techniques to represent data graphically. This research proposes a matrix of guidelines that integrates the discipline of process mining and the set of data visualization techniques based on the purpose of each graph (technique), the question / objective to be achieved and the importance that colors take in the analysis results in the process mining projects. / Revisión por pares
25

Modelo para la evaluación de variables en el Sector Salud utilizando Process Mining y Data Visualization / Model to evaluate variables in the Health Sector using Process Mining and Data Visualization

Evangelista Pescorán, Misael Elias, Coronado Torres, Andre Junior 31 August 2020 (has links)
El presente trabajo propone un modelo para la evaluación de variables en el sector salud utilizando Process Mining y Data Visualization soportado por la herramienta Celonis. Esto surge ante la problemática orientada a la dificultad en la comprensión de las actividades que están involucradas en los procesos negocios y los resultados de este. El proyecto se centra en la investigación de dos disciplinas emergentes. Una de estas disciplinas es Process Mining y se enfoca principalmente en los procesos, en los datos por cada evento, esto con el fin de descubrir un modelo, ver conformidad de los procesos o mejorarlos (Process Mining: Una técnica innovadora para la mejora de los procesos, 2016). La segunda disciplina es Data Visualization, esta permite presentar los datos en un formato gráfico o pictórico ("Data Visualization: What it is and why it matters", 2016). El proyecto implica principalmente investigación, en primer lugar, se analizan las técnicas de Process Mining y Data Visualization. En segundo lugar, se separan las características y cualidades de las disciplinas, y se diseña un modelo para la evaluación de variables en el Sector Salud utilizando Process Mining y Data Visualization, generando un valor agregado, dado que al tener un formato gráfico o pictórico que representa adecuadamente los resultados de usar una técnica de minería de procesos, la comprensión y el análisis en la toma de decisiones es más precisa. En tercer lugar, se valida el modelo en una institución que brinda servicios en el Sector Salud, analizando uno de los procesos core. Finalmente, se elabora un plan de continuidad para que el modelo propuesto se aplique en técnicas de optimización de procesos en las organizaciones. / The present work proposes a model for the evaluation of variables in the health sector using Process Mining and Data Visualization supported by the Celonis tool. This arises from the problem oriented to the difficulty in understanding the activities that are involved in business processes and their results. The project focuses on the investigation of two emerging disciplines. One of these disciplines is Process Mining and it focuses mainly on the processes, on the data for each event, this in order to discover a model, see conformity of the processes or improve them (Process Mining: An innovative technique for the improvement of the processes, 2016). The second discipline is Data Visualization, this allows data to be presented in a graphic or pictorial format ("Data Visualization: What it is and why it matters", 2016). This project mainly involves research, first, Process Mining and Data Visualization techniques are analyzed. Second, the characteristics and qualities of the disciplines are separated, and a model is designed for the evaluation of variables in the Health Sector using Process Mining and Data Visualization, generating added value, given that by having a graphic or pictorial format that adequately represents the results of using a process mining technique, understanding and analysis in decision making is more accurate. Third, the model is validated in an institution that provides services in the Health Sector, analyzing one of the core processes. Finally, a continuity plan is drawn up so that the proposed model can be applied to process optimization techniques in organizations. / Tesis
26

Integrating Process Mining with Discrete-Event Simulation Modeling

Liu, Siyao 01 November 2015 (has links) (PDF)
Discrete-event simulation (DES) is an invaluable tool which organizations can use to help better understand, diagnose, and optimize their operational processes. Studies have shown that for the typical DES exercise, the greatest amount of time is spent on developing an accurate model of the process that is to be studied. Process mining, a similar field of study, focuses on using historical data stored in software databases to accurate recreate and analyze business processes. Utilizing process mining techniques to help rapidly develop DES models can drastically reduce the amount of time spent building simulation models, which ultimately will enable organizations to more quickly identify and correct shortcomings in their operations. Although there have been significant advances in process mining research, there are still several issues with current process mining methods which prevent them from seeing widespread industry adoption. One such issue, which this study examines, is the lack of cross-compatibility between process mining tools and other process analysis tools. Specifically, this study develops and characterizes a method through which mined process models can be converted into discrete-event simulation models. The developed method utilizes a plugin written for the ProM Framework, an existing collection of process mining tools, which takes a mined process model as its input and outputs an Excel workbook which provides the process data in a format more easily read by DES packages. Two event logs which mimic real-world processes were used in the development and validation of the plugin. The developed plugin successfully extracted the critical process data from the mined process model and converted it into a format more easily utilized by DES packages. There are several limitations which will limit model accuracy, but the plugin developed by this study shows that the conversion of process models to basic simulation models is possible. Future research can focus on addressing the limitations to improve model accuracy.
27

Comparison of Distance Metrics for Trace Clustering in Process Mining : An Effort to Simplify Analysis of Usage Patterns in PACS / En jämförelse av distansmetriker för användning inom traceclus-tering i process mining

Sjöbergsson, Christoffer January 2022 (has links)
This study intended to validate if clustering could be used to simplify models generated with process mining. The intention was also to see if these clusters could suggest anything about user efficiency. To that end a new metric where devised, average mean duration deviation. This metric aimed to show if a trace was more or less efficient than a comparative trace. Since the intent was to find traces with similar characteristics the clustering was done with characteristic features instead of time efficiency features. The aim was to find a correlation between efficiency after the fact. A correlation with efficiency could not be found.
28

Entwicklung eines Verfahrens für Monitoring und Klassifikation von Business Process Event Streams im Kontext des Online Process Mining

Krajsic, Philippe 25 January 2023 (has links)
Das stetige Wachstum von Datenmengen, besonders in Unternehmen, setzt die Neu- und Weiterentwicklung geeigneter datengetriebener Analysemethoden voraus, die die gesammelten Informationen in einen Kontext setzen und einen operativen Mehrwert für die Unternehmen erzeugen. Insbesondere die echtzeitnahe Analyse von Geschäftsprozessdaten, die in den Unternehmensinformationssystemen gespeichert werden, lassen sich mit Hilfe von Analysewerkzeugen, wie es das Process Mining zur Verfügung stellt, auswerten und generieren Einblicke in die Prozesse der Unternehmen. Für vertrauenswürdige Ergebnisse wird jedoch eine hohe Qualität der zu analysierenden Daten vorausgesetzt. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Monitoring- und Klassifikationsverfahrens für Business Process Event-Streams zur Verwertung im Kontext des Online Process Mining. Zu den erarbeiteten Artefakten dieser Arbeit zählen ein auf den Bedarfen abzielender Anforderungskatalog, ein Konzept, das eine Streaming-Architektur, ein Klassifikationsmodell, eine rekonstruktionsbasierte Anomalieerkennung, einen Online Learning Workflow und Erklärungskomponenten umfasst sowie eine prototypische Umsetzung der Konzepte. Über technische Experimente auf Basis unterschiedlicher Datengrundlagen und optimierten Umgebungsparametern werden die Funktionsweise und Güte des erarbeiteten Monitoring- und Filterverfahrens überprüft. Durch die Einbettung des Event-Filters in eine Streaming-Architektur, die Kombination verschiedener Strukturen des maschinellen Lernens und der damit einhergehenden Generalisierungsfähigkeit des Modells sowie der Fähigkeit des Modells kontinuierlich zu Lernen gelingt es existierende Ansätze um Aspekte der echtzeitnahen Verarbeitung und dem Monitoring von Event-Streams zu erweitern und die Genauigkeit der Anomalieerkennung auf Event-Ebene zu verbessern. Durch Monitoring, Klassifikation und Filterung der eingehenden Event-Daten kann die Datenqualität für die Anwendung nachgelagerter Process Mining Aktivitäten erhöht werden.
29

[en] USE OF PETRI NET TO MODEL RESOURCE ALLOCATION IN PROCESS MINING / [pt] USO DE REDES DE PETRI NA MODELAGEM DE ALOCAÇÃO DE RECURSOS EM MINERAÇÃO DE PROCESSOS

BEATRIZ MARQUES SANTIAGO 22 November 2019 (has links)
[pt] Business Process Management é a ciência de observar como o trabalho é realizado em determinada organização garantindo produtos consistentes e se aproveitando de oportunidades de melhoria. Atualmente, boa parte dos processos são realizados em frameworks, muitos com armazenamento de arquivos de log, no qual é disponibilizada uma grande quantidade de informação que pode ser explorada de diferentes formas e com diferentes objetivos, área denominada como Mineração de Processos. Apesar de muitos desses dados contemplarem o modo como os recursos são alocados para cada atividade, o foco maior dos trabalhos nessa área é na descoberta do processo e na verificação de conformidade do mesmo. Nesta dissertação é proposto um modelo em petri net que incorpora a alocação de recurso, de forma a poder explorar as propriedades deste tipo de modelagem, como por exemplo a definição de todos os estados possíveis. Como aplicação do modelo, realizou-se um estudo comparativo entre duas políticas, uma mais especialista, de alocação de recurso, e outra mais generalista usando simulações de Monte Carlo com distribuição de probabilidade exponencial para o início de novos casos do processo e para estimação do tempo de execução do par recurso atividade. Sendo assim, para avaliação de cada política foi usado um sistema de pontuação que considera o andamento do processo e o tempo total de execução do mesmo. / [en] Business Process Management is the science of observing how the work is performed in a given organization ensuring consistent products and seeking opportunities for improvement. Currently, most of the processes are performed in frameworks, many with log files, in which a large amount of data is available. These data can be explored in different ways and with different objectives, giving rise to the Process Mining area. Although many of these data informs how resources are allocated for each activity, the major focus of previous work is on the discovery process techniques and process compliance. In this thesis a petri net model that incorporates resource allocation is proposed exploring the properties of this type of modeling, such as the definition of all possible states. As a model validation, it is applied in a comparative study between two resource allocation policies, one considering the expertise of each resource and other with a more generalist allocation. The arrival of new cases and the resource-activity pair execution time were estimated by Monte Carlo simulations with exponential probability distribution. Thus, for the evaluation of each policy a scoring system was used considering the progress of the process and the total execution time.
30

Probabilistic Estimation of Unobserved Process Events

Rogge-Solti, Andreas January 2014 (has links)
Organizations try to gain competitive advantages, and to increase customer satisfaction. To ensure the quality and efficiency of their business processes, they perform business process management. An important part of process management that happens on the daily operational level is process controlling. A prerequisite of controlling is process monitoring, i.e., keeping track of the performed activities in running process instances. Only by process monitoring can business analysts detect delays and react to deviations from the expected or guaranteed performance of a process instance. To enable monitoring, process events need to be collected from the process environment. When a business process is orchestrated by a process execution engine, monitoring is available for all orchestrated process activities. Many business processes, however, do not lend themselves to automatic orchestration, e.g., because of required freedom of action. This situation is often encountered in hospitals, where most business processes are manually enacted. Hence, in practice it is often inefficient or infeasible to document and monitor every process activity. Additionally, manual process execution and documentation is prone to errors, e.g., documentation of activities can be forgotten. Thus, organizations face the challenge of process events that occur, but are not observed by the monitoring environment. These unobserved process events can serve as basis for operational process decisions, even without exact knowledge of when they happened or when they will happen. An exemplary decision is whether to invest more resources to manage timely completion of a case, anticipating that the process end event will occur too late. This thesis offers means to reason about unobserved process events in a probabilistic way. We address decisive questions of process managers (e.g., "when will the case be finished?", or "when did we perform the activity that we forgot to document?") in this thesis. As main contribution, we introduce an advanced probabilistic model to business process management that is based on a stochastic variant of Petri nets. We present a holistic approach to use the model effectively along the business process lifecycle. Therefore, we provide techniques to discover such models from historical observations, to predict the termination time of processes, and to ensure quality by missing data management. We propose mechanisms to optimize configuration for monitoring and prediction, i.e., to offer guidance in selecting important activities to monitor. An implementation is provided as a proof of concept. For evaluation, we compare the accuracy of the approach with that of state-of-the-art approaches using real process data of a hospital. Additionally, we show its more general applicability in other domains by applying the approach on process data from logistics and finance. / Unternehmen versuchen Wettbewerbsvorteile zu gewinnen und die Kundenzufriedenheit zu erhöhen. Um die Qualität und die Effizienz ihrer Prozesse zu gewährleisten, wenden Unternehmen Geschäftsprozessmanagement an. Hierbei spielt die Prozesskontrolle im täglichen Betrieb eine wichtige Rolle. Prozesskontrolle wird durch Prozessmonitoring ermöglicht, d.h. durch die Überwachung des Prozessfortschritts laufender Prozessinstanzen. So können Verzögerungen entdeckt und es kann entsprechend reagiert werden, um Prozesse wie erwartet und termingerecht beenden zu können. Um Prozessmonitoring zu ermöglichen, müssen prozessrelevante Ereignisse aus der Prozessumgebung gesammelt und ausgewertet werden. Sofern eine Prozessausführungsengine die Orchestrierung von Geschäftsprozessen übernimmt, kann jede Prozessaktivität überwacht werden. Aber viele Geschäftsprozesse eignen sich nicht für automatisierte Orchestrierung, da sie z.B. besonders viel Handlungsfreiheit erfordern. Dies ist in Krankenhäusern der Fall, in denen Geschäftsprozesse oft manuell durchgeführt werden. Daher ist es meist umständlich oder unmöglich, jeden Prozessfortschritt zu erfassen. Zudem ist händische Prozessausführung und -dokumentation fehleranfällig, so wird z.B. manchmal vergessen zu dokumentieren. Eine Herausforderung für Unternehmen ist, dass manche Prozessereignisse nicht im Prozessmonitoring erfasst werden. Solch unbeobachtete Prozessereignisse können jedoch als Entscheidungsgrundlage dienen, selbst wenn kein exaktes Wissen über den Zeitpunkt ihres Auftretens vorliegt. Zum Beispiel ist bei der Prozesskontrolle zu entscheiden, ob zusätzliche Ressourcen eingesetzt werden sollen, wenn eine Verspätung angenommen wird. Diese Arbeit stellt einen probabilistischen Ansatz für den Umgang mit unbeobachteten Prozessereignissen vor. Dabei werden entscheidende Fragen von Prozessmanagern beantwortet (z.B. "Wann werden wir den Fall beenden?", oder "Wann wurde die Aktivität ausgeführt, die nicht dokumentiert wurde?"). Der Hauptbeitrag der Arbeit ist die Einführung eines erweiterten probabilistischen Modells ins Geschäftsprozessmanagement, das auf stochastischen Petri Netzen basiert. Dabei wird ein ganzheitlicher Ansatz zur Unterstützung der einzelnen Phasen des Geschäftsprozesslebenszyklus verfolgt. Es werden Techniken zum Lernen des probabilistischen Modells, zum Vorhersagen des Zeitpunkts des Prozessendes, zum Qualitätsmanagement von Dokumentationen durch Erkennung fehlender Einträge, und zur Optimierung von Monitoringkonfigurationen bereitgestellt. Letztere dient zur Auswahl von relevanten Stellen im Prozess, die beobachtet werden sollten. Diese Techniken wurden in einer quelloffenen prototypischen Anwendung implementiert. Zur Evaluierung wird der Ansatz mit existierenden Alternativen an echten Prozessdaten eines Krankenhauses gemessen. Die generelle Anwendbarkeit in weiteren Domänen wird examplarisch an Prozessdaten aus der Logistik und dem Finanzwesen gezeigt.

Page generated in 0.0274 seconds