Spelling suggestions: "subject:"[een] PROCESS MINING"" "subject:"[enn] PROCESS MINING""
61 |
Modeling and mining business process variants in cloud environments / Modélisation et fouille de variants de procédés d'entreprise dans les environnements cloudYongsiriwit, Karn 23 January 2017 (has links)
De plus en plus les organisations adoptent les systèmes d'informations sensibles aux processus basés sur Cloud en tant qu'un environnement pour gérer et exécuter des processus dans le Cloud dans l'objectif de partager et de déployer leurs applications de manière optimale. Cela est particulièrement vrai pour les grandes organisations ayant des succursales opérant dans des différentes régions avec des processus considérablement similaires. Telles organisations doivent soutenir de nombreuses variantes du même processus en raison de la culture locale de leurs succursales, de leurs règlements, etc. Cependant, le développement d'une nouvelle variante de processus à partir de zéro est sujet à l'erreur et peut prendre beaucoup du temps. Motivés par le paradigme "la conception par la réutilisation", les succursales peuvent collaborer pour développer de nouvelles variantes de processus en apprenant de leurs processus similaires. Ces processus sont souvent hétérogènes, ce qui empêche une interopérabilité facile et dynamique entre les différentes succursales. Une variante de processus est un ajustement d'un modèle de processus afin de s'adapter d'une façon flexible aux besoins spécifiques. De nombreuses recherches dans les universités et les industries visent à faciliter la conception des variantes de processus. Plusieurs approches ont été développées pour aider les concepteurs de processus en recherchant des modèles de processus métier similaires ou en utilisant des modèles de référence. Cependant, ces approches sont lourdes, longues et sujettes à des erreurs. De même, telles approches recommandent des modèles de processus pas pratiques pour les concepteurs de processus qui ont besoin d'ajuster une partie spécifique d'un modèle de processus. En fait, les concepteurs de processus peuvent mieux développer des variantes de processus ayant une approche qui recommande un ensemble bien défini d'activités à partir d'un modèle de processus défini comme un fragment de processus. Les grandes organisations multi-sites exécutent les variantes de processus BP dans l'environnement Cloud pour optimiser le déploiement et partager les ressources communes. Cependant, ces ressources Cloud peuvent être décrites en utilisant des différents standards de description des ressources Cloud ce qui empêche l'interopérabilité entre les différentes succursales. Dans cette thèse, nous abordons les limites citées ci-dessus en proposant une approche basée sur les ontologies pour peupler sémantiquement une base de connaissance commune de processus et de ressources Cloud, ce qui permet une interopérabilité entre les succursales de l'organisation. Nous construisons notre base de connaissance en étendant les ontologies existantes. Ensuite, nous proposons une approche pour exploiter cette base de connaissances afin de supporter le développement des variantes BP. De plus, nous adoptons un algorithme génétique pour allouer d'une manière optimale les ressources Cloud aux BPs. Pour valider notre approche, nous développons deux preuves de concepts et effectuons des expériences sur des ensembles de données réels. Les résultats expérimentaux montrent que notre approche est réalisable et précise dans des cas d'utilisation réels / More and more organizations are adopting cloud-based Process-Aware Information Systems (PAIS) to manage and execute processes in the cloud as an environment to optimally share and deploy their applications. This is especially true for large organizations having branches operating in different regions with a considerable amount of similar processes. Such organizations need to support many variants of the same process due to their branches' local culture, regulations, etc. However, developing new process variant from scratch is error-prone and time consuming. Motivated by the "Design by Reuse" paradigm, branches may collaborate to develop new process variants by learning from their similar processes. These processes are often heterogeneous which prevents an easy and dynamic interoperability between different branches. A process variant is an adjustment of a process model in order to flexibly adapt to specific needs. Many researches in both academics and industry are aiming to facilitate the design of process variants. Several approaches have been developed to assist process designers by searching for similar business process models or using reference models. However, these approaches are cumbersome, time-consuming and error-prone. Likewise, such approaches recommend entire process models which are not handy for process designers who need to adjust a specific part of a process model. In fact, process designers can better develop process variants having an approach that recommends a well-selected set of activities from a process model, referred to as process fragment. Large organizations with multiple branches execute BP variants in the cloud as environment to optimally deploy and share common resources. However, these cloud resources may be described using different cloud resources description standards which prevent the interoperability between different branches. In this thesis, we address the above shortcomings by proposing an ontology-based approach to semantically populate a common knowledge base of processes and cloud resources and thus enable interoperability between organization's branches. We construct our knowledge base built by extending existing ontologies. We thereafter propose an approach to mine such knowledge base to assist the development of BP variants. Furthermore, we adopt a genetic algorithm to optimally allocate cloud resources to BPs. To validate our approach, we develop two proof of concepts and perform experiments on real datasets. Experimental results show that our approach is feasible and accurate in real use-cases
|
62 |
Integración del proceso de seguridad de la información con minería de procesos del bloque de cirugía / Security Model for Business Processes Using Process Mining and Data Visualization in the Healthcare SectorEspinoza Vásquez, Miguel Angel, Park Cardenas, Ilche Aaron 13 November 2020 (has links)
En este trabajo se propone un modelo integrado de protección de eventos para resguardar la información del paciente utilizando minería de procesos y visualización de datos. Por ello, el estándar 27001 se utiliza como relación para detectar diversos tipos de ataques informáticos orientados a la evaluación de datos recolectados en procesos de negocio, con el propósito de mejorar la gestión de sus riesgos de seguridad de la información del establecimiento médico. El modelo propuesto se basa en la aplicación de un conjunto de herramientas de análisis de ataques informáticos para aumentar el nivel de seguridad de los procesos de la empresa. La propuesta está conformada por 6 fases. 1. Evaluar riesgos, 2. Implementar controles, 3. Definir un plan de tratamiento, 4. Minería de Procesos, 5. Visualización de Datos y 6. Evaluación de Resultados. La propuesta fue validada mediante un caso de un ciberataque a un establecimiento médico el cual no contaba con controles y planes de contingencia adecuados dentro de sus procesos de negocio. Los resultados preliminares muestran que ante al apoyo de los instrumentos de nuestro modelo el nivel de seguridad ha aumentado en un 25% con nuestra propuesta. / In this work, an integrated event protection model is proposed to protect patient information using process mining and data visualization. Therefore, standard 27001 is used as a relationship to detect various types of computer attacks aimed at evaluating data collected in business processes, to improve the management of its information security risks in the medical establishment. The proposed model is based on the application of a set of computer attack analysis tools to increase the level of security of the company's processes. The proposal is made up of 6 phases. 1. Assess risks, 2. Implement controls, 3. Define a treatment plan, 4. Process Mining, 5. Data visualization and 6. Results evaluation. The proposal was validated through a case of a cyber-attack on a medical establishment which did not have adequate controls and contingency plans within its business processes. Preliminary results show that with the support of the instruments of our model, the level of security has increased by 25% with our proposal. / Trabajo de investigación
|
63 |
[pt] MINERANDO O PROCESSO DE UM COQUEAMENTO RETARDADO ATRAVÉS DE AGRUPAMENTO DE ESTADOS / [en] MINING THE PROCESS OF A DELAYED COKER USING CLUSTERED STATESRAFAEL AUGUSTO GASETA FRANCA 25 November 2021 (has links)
[pt] Procedimentos e processos são essenciais para garantir a qualidade de
qualquer operação. Porém, o processo realizado na prática nem sempre está
de acordo com o processo idealizado. Além disso, uma análise mais refinada
de gargalos e inconsistências só é possível a partir do registro de eventos do
processo (log). Mineração de processos (process mining) é uma área que reúne
um conjunto de métodos para reconstruir, monitorar e aprimorar um processo a
partir de seu registro de eventos. Mas, ao aplicar as soluções já existentes no log
de uma unidade de coqueamento retardado, os resultados foram insatisfatórios.
O núcleo do problema está na forma como o log está estruturado, carecendo
de uma identificação de casos, essencial para a mineração do processo. Para
contornar esse problema, aplicamos agrupamento hierárquico aglomerativo no
log, separando as válvulas em grupos que exercem uma função na operação.
Desenvolvemos uma ferramenta (PLANTSTATE) para avaliar a qualidade desses
grupos no contexto da planta e ajustar conforme a necessidade do domínio.
Identificando os momentos de ativação desses grupos no log chegamos a uma
estrutura de sequência e paralelismo entre os grupos. Finalmente, propomos
um modelo capaz de representar as relações entre os grupos, resultando em
um processo que representa a operações em uma unidade de coqueamento
retardado. / [en] Procedures and processes are essential to guarantee the quality of any
operation. However, processes carried out in the real world are not always in
accordance with the imagined process. Furthermore, a more refined analysis
of obstacles and inconsistencies is only possible from the process events record
(log). Process mining is an area that brings together a set of methods to
rebuild, monitor and improve processes from their log. Nevertheless, when
applying existing solutions to the log of a delayed coker unit, the results
were unsatisfactory. The core of the problem is how the log is structured,
lacking a case identification, essential for process mining. To deal with this
issue, we apply agglomerative hierarchical clustering in the log, separating
the valves into groups that perform a task in an operation. We developed a
tool (PLANTSTATE) to assess the quality of these groups in the context of
the plant and to adjust in accord to the needs of the domain. By identifying
the moments of activation of these groups in the log we arrive at a structure
of sequence and parallelism between the groups. Finally, we propose a model
capable of representing the relationships between groups, resulting in a process
that represents the operations in a delayed coker unit.
|
64 |
Continuous Event Log Extraction for Process MiningSelig, Henny January 2017 (has links)
Process mining is the application of data science technologies on transactional business data to identify or monitor processes within an organization. The analyzed data often originates from process-unaware enterprise software, e.g. Enterprise Resource Planning (ERP) systems. The differences in data management between ERP and process mining systems result in a large fraction of ambiguous cases, affected by convergence and divergence. The consequence is a chasm between the process as interpreted by process mining, and the process as executed in the ERP system. In this thesis, a purchasing process of an SAP ERP system is used to demonstrate, how ERP data can be extracted and transformed into a process mining event log that expresses ambiguous cases as accurately as possible. As the content and structure of the event log already define the scope (i.e. which process) and granularity (i.e. activity types), the process mining results depend on the event log quality. The results of this thesis show how the consideration of case attributes, the notion of a case and the granularity of events can be used to manage the event log quality. The proposed solution supports continuous event extraction from the ERP system. / Process mining är användningen av datavetenskaplig teknik för transaktionsdata, för att identifiera eller övervaka processer inom en organisation. Analyserade data härstammar ofta från processomedvetna företagsprogramvaror, såsom SAP-system, vilka är centrerade kring affärsdokumentation. Skillnaderna i data management mellan Enterprise Resource Planning (ERP)och process mining-system resulterar i en stor andel tvetydiga fall, vilka påverkas av konvergens och divergens. Detta resulterar i ett gap mellan processen som tolkas av process mining och processen som exekveras i ERP-systemet. I denna uppsats används en inköpsprocess för ett SAP ERP-system för att visa hur ERP-data kan extraheras och omvandlas till en process mining-orienterad händelselogg som uttrycker tvetydiga fall så precist som möjligt. Eftersom innehållet och strukturen hos händelseloggen redan definierar omfattningen (vilken process) och granularitet (aktivitetstyperna), så beror resultatet av process mining på kvalitén av händelseloggen. Resultaten av denna uppsats visar hur definitioner av typfall och händelsens granularitet kan användas för att förbättra kvalitén. Den beskrivna lösningen stöder kontinuerlig händelseloggsextraktion från ERPsystemet.
|
65 |
Data-Driven Simulation Modeling of Construction and Infrastructure Operations Using Process Knowledge DiscoveryAkhavian, Reza 01 January 2015 (has links)
Within the architecture, engineering, and construction (AEC) domain, simulation modeling is mainly used to facilitate decision-making by enabling the assessment of different operational plans and resource arrangements, that are otherwise difficult (if not impossible), expensive, or time consuming to be evaluated in real world settings. The accuracy of such models directly affects their reliability to serve as a basis for important decisions such as project completion time estimation and resource allocation. Compared to other industries, this is particularly important in construction and infrastructure projects due to the high resource costs and the societal impacts of these projects. Discrete event simulation (DES) is a decision making tool that can benefit the process of design, control, and management of construction operations. Despite recent advancements, most DES models used in construction are created during the early planning and design stage when the lack of factual information from the project prohibits the use of realistic data in simulation modeling. The resulting models, therefore, are often built using rigid (subjective) assumptions and design parameters (e.g. precedence logic, activity durations). In all such cases and in the absence of an inclusive methodology to incorporate real field data as the project evolves, modelers rely on information from previous projects (a.k.a. secondary data), expert judgments, and subjective assumptions to generate simulations to predict future performance. These and similar shortcomings have to a large extent limited the use of traditional DES tools to preliminary studies and long-term planning of construction projects. In the realm of the business process management, process mining as a relatively new research domain seeks to automatically discover a process model by observing activity records and extracting information about processes. The research presented in this Ph.D. Dissertation was in part inspired by the prospect of construction process mining using sensory data collected from field agents. This enabled the extraction of operational knowledge necessary to generate and maintain the fidelity of simulation models. A preliminary study was conducted to demonstrate the feasibility and applicability of data-driven knowledge-based simulation modeling with focus on data collection using wireless sensor network (WSN) and rule-based taxonomy of activities. The resulting knowledge-based simulation models performed very well in properly predicting key performance measures of real construction systems. Next, a pervasive mobile data collection and mining technique was adopted and an activity recognition framework for construction equipment and worker tasks was developed. Data was collected using smartphone accelerometers and gyroscopes from construction entities to generate significant statistical time- and frequency-domain features. The extracted features served as the input of different types of machine learning algorithms that were applied to various construction activities. The trained predictive algorithms were then used to extract activity durations and calculate probability distributions to be fused into corresponding DES models. Results indicated that the generated data-driven knowledge-based simulation models outperform static models created based upon engineering assumptions and estimations with regard to compatibility of performance measure outputs to reality.
|
66 |
[en] DEALING WITH DECISION POINTS IN PROCESS MINING / [pt] TRATANDO PONTOS DE DECISÃO EM MINERAÇÃO DE PROCESSOSDANIEL DUQUE GUIMARAES SARAIVA 26 April 2019 (has links)
[pt] Devido ao grande aumento da competitividade e da, cada vez maior, demanda por eficiência, muitas empresas perceberam que é necessário repensar e melhorar seus processos. Para atingir este objetivo, elas têm cada vez mais buscado técnicas computacionais que sejam capazes de extrair novas informações e conhecimentos de suas grandes bases de dados. Os processos das empresas, normalmente, possuem momentos em que uma decisão deve ser tomada. É razoável esperar que casos similares tenham decisões parecidas sendo tomadas ao longo do processo. O objetivo desta dissertação é criar um minerador de decisão que seja capaz the automatizar a tomada de decisão dentro de um processo. A primeira parte do trabalho consiste na identificação dos pontos de decisão em uma rede de Petri. Em seguida, transformamos a tomada de decisão em um problema de classificação no qual cada possibilidade da decisão se torna uma classe. Para fazer a automatização, é utilizada uma árvore de decisão treinada com os atributos dos dados que estão presentes nos logs dos eventos. Um estudo de caso real é utilizado para validar que o minerador de decisão é confiável para processos reais. / [en] Due to the increasing competitiveness and demand for higher performance, many companies realized that it is necessary to rethink and enhance their business processes. In order to achieve this goal, companies have been turning to computational techniques that are capable of extracting new information and insights from their, ever-increasing, datasets. Business processes, normally, have many places where a decision has to be made. It is reasonable to expect that similar inputs have the same decisions made to them during the process. The goal of this dissertation is to create a decision miner that automates the decision-making inside a process. First, we will identify decision points in a Petri net model. Then, we will transform the decision-making problem into a classification one, where each of the possible decisions becomes a class. In order to automate the decision-making, a decision tree is trained using data attributes from the event logs. A real world case study is used to validate that the decision miner is reliable when using real world data.
|
67 |
[en] BRANCH-CUT-AND-PRICE APPROACH FOR PROCESS DISCOVERY / [pt] UMA ABORDAGEM PARA MINERAÇÃO DE PROCESSOS USANDO GERAÇÃO DE COLUNAS E CORTESGEORGES MIRANDA SPYRIDES 28 May 2019 (has links)
[pt] Descoberta de Processo significa determinar um modelo de processo a partir de um registro histórico de eventos de um processo de negócios. Muitos algoritmos de descoberta de processos tentam sintetizar uma rede de Petri que representa o registro localizando locais e arcos que relacionam as classes de eventos. Bergenthum et al (2007) e van der Werf et al. (2008) propõem formulações para este problema descobrir um place de cada vez, em que cada solução básica do conjunto de desigualdades representa um lugar candidato. Propomos uma formulação global de programação inteira que, dado um registro histórico, determina todos os places e arcos que definem uma rede de Petri de uma só vez. Este modelo é uma alternativa a seleção de locais, mas tem um problema de eficiência devido à grande quantidade de variáveis inteiras usadas. Também propomos um método de decomposição para o modelo ILP global para tratar cada place e suas restrições associadas como um subproblema separado. Conseguimos então executar o algoritmo em instâncias sintéticas grandes, o que é inédito para esta classe de mineradores de processo. / [en] Process Discovery amounts to determine a process model from an event log of a business process. Many process discovery algorithms try to synthesize a Petri net representing the log by finding places and arcs
that relate the event classes. Bergenthum et al. (2007) and van der Werf et al. (2008) propose formulations for this problem discover one place at a time, in which each basic solution of the set of inequalities represents a candidate place. We propose a global integer programming formulation that, given a log, determines all places and arcs defining a Petri net. This model simplifies the selection of places but has an efficiency problem due to a large number of integer variables used. We also propose a decomposition method for the global ILP model to treat each place and their associated constraints as a separate sub-problem. We can run the algorithm on large synthetic instances, which is unprecedented for this kind of process miner.
|
68 |
Anonymization Techniques for Privacy-preserving Process MiningFahrenkrog-Petersen, Stephan A. 30 August 2023 (has links)
Process Mining ermöglicht die Analyse von Event Logs. Jede Aktivität ist durch ein Event in einem Trace recorded, welcher jeweils einer Prozessinstanz entspricht. Traces können sensible Daten, z.B. über Patienten enthalten. Diese Dissertation adressiert Datenschutzrisiken für Trace Daten und Process Mining. Durch eine empirische Studie zum Re-Identifikations Risiko in öffentlichen Event Logs wird die hohe Gefahr aufgezeigt, aber auch weitere Risiken sind von Bedeutung. Anonymisierung ist entscheidend um Risiken zu adressieren, aber schwierig weil gleichzeitig die Verhaltensaspekte des Event Logs erhalten werden sollen. Dies führt zu einem Privacy-Utility-Trade-Off. Dieser wird durch neue Algorithmen wie SaCoFa und SaPa angegangen, die Differential Privacy garantieren und gleichzeitig Utility erhalten. PRIPEL ergänzt die anonymiserten Control-flows um Kontextinformationen und ermöglich so die Veröffentlichung von vollständigen, geschützten Logs. Mit PRETSA wird eine Algorithmenfamilie vorgestellt, die k-anonymity garantiert. Dafür werden privacy-verletztende Traces miteinander vereint, mit dem Ziel ein möglichst syntaktisch ähnliches Log zu erzeugen. Durch Experimente kann eine bessere Utility-Erhaltung gegenüber existierenden Lösungen aufgezeigt werden. / Process mining analyzes business processes using event logs. Each activity execution is recorded as an event in a trace, representing a process instance's behavior. Traces often hold sensitive info like patient data. This thesis addresses privacy concerns arising from trace data and process mining. A re-identification risk study on public event logs reveals high risk, but other threats exist. Anonymization is vital to address these issues, yet challenging due to preserving behavioral aspects for analysis, leading to a privacy-utility trade-off. New algorithms, SaCoFa and SaPa, are introduced for trace anonymization using noise for differential privacy while maintaining utility. PRIPEL supplements anonymized control flows with trace contextual info for complete protected logs. For k-anonymity, the PRETSA algorithm family merges privacy-violating traces based on a prefix representation of the event log, maintaining syntactic similarity. Empirical evaluations demonstrate utility improvements over existing techniques.
|
69 |
Modélisation automatique et simulation de parcours de soins à partir de bases de données de santé / Process discovery, analysis and simulation of clinical pathways using health-care dataProdel, Martin 10 April 2017 (has links)
Les deux dernières décennies ont été marquées par une augmentation significative des données collectées dans les systèmes d'informations. Cette masse de données contient des informations riches et peu exploitées. Cette réalité s’applique au secteur de la santé où l'informatisation est un enjeu pour l’amélioration de la qualité des soins. Les méthodes existantes dans les domaines de l'extraction de processus, de l'exploration de données et de la modélisation mathématique ne parviennent pas à gérer des données aussi hétérogènes et volumineuses que celles de la santé. Notre objectif est de développer une méthodologie complète pour transformer des données de santé brutes en modèles de simulation des parcours de soins cliniques. Nous introduisons d'abord un cadre mathématique dédié à la découverte de modèles décrivant les parcours de soin, en combinant optimisation combinatoire et Process Mining. Ensuite, nous enrichissons ce modèle par l’utilisation conjointe d’un algorithme d’alignement de séquences et de techniques classiques de Data Mining. Notre approche est capable de gérer des données bruitées et de grande taille. Enfin, nous proposons une procédure pour la conversion automatique d'un modèle descriptif des parcours de soins en un modèle de simulation dynamique. Après validation, le modèle obtenu est exécuté pour effectuer des analyses de sensibilité et évaluer de nouveaux scénarios. Un cas d’étude sur les maladies cardiovasculaires est présenté, avec l’utilisation de la base nationale des hospitalisations entre 2006 et 2015. La méthodologie présentée dans cette thèse est réutilisable dans d'autres aires thérapeutiques et sur d'autres sources de données de santé. / During the last two decades, the amount of data collected in Information Systems has drastically increased. This large amount of data is highly valuable. This reality applies to health-care where the computerization is still an ongoing process. Existing methods from the fields of process mining, data mining and mathematical modeling cannot handle large-sized and variable event logs. Our goal is to develop an extensive methodology to turn health data from event logs into simulation models of clinical pathways. We first introduce a mathematical framework to discover optimal process models. Our approach shows the benefits of combining combinatorial optimization and process mining techniques. Then, we enrich the discovered model with additional data from the log. An innovative combination of a sequence alignment algorithm and of classical data mining techniques is used to analyse path choices within long-term clinical pathways. The approach is suitable for noisy and large logs. Finally, we propose an automatic procedure to convert static models of clinical pathways into dynamic simulation models. The resulting models perform sensitivity analyses to quantify the impact of determinant factors on several key performance indicators related to care processes. They are also used to evaluate what-if scenarios. The presented methodology was proven to be highly reusable on various medical fields and on any source of event logs. Using the national French database of all the hospital events from 2006 to 2015, an extensive case study on cardiovascular diseases is presented to show the efficiency of the proposed framework.
|
70 |
Modelo de evaluación de métricas de control para procesos de negocio utilizando Process Mining / Control Metrics Evaluation Model for Business Processes using Process MiningGarcía Oliva, Rodrigo Alfonso, Santos Barrenechea, Jesús Javier 24 October 2020 (has links)
Este proyecto tiene como objetivo analizar la complejidad de los procesos de negocio en las empresas retail de una forma profunda que en otras técnicas resulta muy difícil o incluso imposible de realizar. Con Process Mining es posible superar esta brecha y eso es lo que queremos demostrar a través de la implementación de un modelo.
El proyecto propone un modelo de Process Mining que contemple la presencia de diversas fuentes de información de un proceso logístico en una empresa minorista, así como la aplicación de las tres fases de Process Mining (Descubrimiento, Conformidad y Mejora) y adicionalmente se propone una fase de diagnóstico la cual detalla un conjunto de métricas de control para evaluar el proceso de logística y así poder generar una plan de mejora que dé las pautas para optimizar el proceso en base a lo analizado mediante esta técnica.
El modelo desarrollado se implementó en una empresa peruana del sector retail (TopiTop S.A) para el análisis del proceso de logística, específicamente el de gestión de órdenes de compra. Este se analizó dando como resultado de la aplicación del modelo y de la evaluación de las métricas propuestas, la identificación de anomalías en el proceso a través de la aplicación de cada una de las fases del modelo propuesto, asegurando la calidad del análisis en la fase de preprocesamiento, generando el modelo de procesos y extrayendo información que se derivó en métricas de control a través de la herramienta de código abierto ProM Tools. / This project aims to analyze the complexity of business processes in retail companies in a deep way that in other techniques is very difficult or even impossible to do. With Process Mining it is possible to overcome this gap and that is what we want to demonstrate through the implementation of a Process Mining model.
The project proposes a Process Mining model that contemplates the presence of various sources of information of a logistic process in a retail company, as well as the application of the three phases of Process Mining (Discovery, Compliance and Improvement). Additionally, a diagnostic phase is proposed, which details a set of control metrics to evaluate the logistic process and thus be able to generate an improvement plan that gives the guidelines to optimize the process based on what has been analyzed through this technique.
The model developed was implemented in a peruvian company in the retail sector (TopiTop S.A.) for the analysis of the logistics process, specifically the management of purchase orders. This was analyzed giving as a result of the application of the model and the evaluation of the proposed metrics, the identification of anomalies in the process through the application of each of the phases of the proposed model, ensuring the quality of the analysis in the pre-processing phase, generating the process model and extracting information that was derived in control metrics through the open source tool ProM Tools. / Tesis
|
Page generated in 0.0504 seconds