• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 18
  • 7
  • 6
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 83
  • 83
  • 83
  • 83
  • 19
  • 18
  • 16
  • 15
  • 14
  • 14
  • 14
  • 12
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Investigations on the in vitro effects of aqueous Eurycoma longifolia Jack extract on male reproductive functions

Erasmus, Nicolete January 2012 (has links)
<p>Eurycoma longifolia (Tongkat Ali / TA) is a Malaysian shrub used to treat various illnesses including male infertility. Considering that TA is also used to improve male fertility and no report&nbsp / regarding its safety has been published, this study investigated the effects of a patented, aqueous TA extract on various sperm and testicular functions. Materials and Methods This study&nbsp / encompasses two parts (part 1: on spermatozoa / part 2: on TM3-Leydig and TM4-Sertoli cells). Part 1: Semen samples of 27 patients and 13 fertile donors were divided into two groups,&nbsp / washed and swim-up prepared spermatozoa, and incubated with different concentrations of TA (1, 10, 20, 100, 2000 &mu / g/ml) for 1 hour at 37&deg / C. A sample without addition of TA served as control. After incubation with TA,&nbsp / the following parameters were evaluated: viability (Eosin-Nigrosin test), total and progressive motility (CASA), acrosome reaction (triple stain technique), sperm production of reactive oxygen&nbsp / species (ROS / dihydroethidium test / DHE), sperm DNA fragmentation (TUNEL assay) and mitochondrial membrane potential (&Delta / &psi / m) (Depsipher kit). Part 2: TM3-Leydig and TM4-Sertoli cells&nbsp / incubated with different concentrations of TA (0.4, 0.8, 1.6, 3.125, 6.25, 12.5, 25, 50 &mu / g/ml) and control (without extract) for 48 and 96 hours. After incubation with TA, the following parameters were&nbsp / evaluated: viability (XTT), cell proliferation (protein assay), testosterone (testosterone ELISA test) and pyruvate (pyruvate assay). Results Part 1: For washed spermatozoa, significant&nbsp / dose-dependent trends were found&nbsp / for viability, total motility, acrosome reaction and sperm ROS production. However, these trends were only significant if the highest concentrations were included in the calculation. In the swim-up spermatozoa, ROS production of spermatozoa showed a biphasic relationship with its lowest percentage at 10 &mu / g/ml, yet, no significance could be&nbsp / observed (P=0.9505). No influence of TA could be observed for sperm DNA fragmentation nor &Delta / &psi / m.</p>
62

Amélioration de la fonction pancréatique par l'activité physique chez le rat diabétique de type 2

Décary, Simon January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
63

The metabolic profile of phenylbutyric acid and its antioxidant capacity in vervet monkeys / Wilhelmina Johanna van der Linde

Van der Linde, Wilhelmina Johanna January 2010 (has links)
X–linked adrenoleukodystrophy (X–ALD) is the most common peroxisomal enzyme deficiency disorder, characterized by inborn mutations in the ABCD1 gene, an ATP–binding cassette (ABC) half–transporter. The ABCD1 gene encodes the adrenoleukodystrophy protein (ALDP), the transporter for the very–long–chain fatty acids (VLCFA; C > 22:0) from the cytosol into the peroxisomes to enter the peroxisomal B–oxidation pathway. The diagnostic disease marker is the elevated levels of VLCFAs which accumulate in different tissues and body fluids, leading to inflammatory demyelination, neuro–deterioration and adrenocortical insufficiency. At present, there is no satisfactory therapy for X–ALD available. However, another peroxisomal ABC half–transporter, ALDRP can compensate for the functional loss of ALDP and is encoded by the ABCD2 gene. This prompted a new approach to treatment strategies. Phenylbutyric acid (PBA) over–expresses the ABCD2 gene, leading to an increased expression of ALDRP and PBA decreases VLCFA levels by increasing peroxisomal B–oxidation. This study had a dual aim: to determine the antioxidant capacity of PBA and to verify known and identify new metabolites of PBA. In vitro, HeLa cells were cultivated and treated with 0.5 mM, 1 mM, 2 mM and 5 mM PBA for 48 hours. The ROS, lipid peroxidation, apoptosis and cell viability were determined using fluorescein–based flow cytometry. Images were taken to visualize the peroxisome proliferation. In vivo, a vervet monkey was given a single dose of 130 mg/kg PBA. Blood was collected before treatment and 15 minutes, 30 minutes, 1, 2 and 3 hours after treatment. ROS, apoptosis and lipid peroxidation were determined by fluorescein–based flow cytometry. Urine was collected before treatment and 15 minutes, 30 minutes, 1, 2, 3, 7 and 24 hours after PBA treatment. A standardised method, employing gas chromatography–mass spectrometry (GC/MS), was used to analyse the organic acids in the urine and fatty acids in the blood. In vitro results showed decreased levels of ROS and lipid peroxidation with increased concentrations of PBA. PBA showed a protective effect towards the HeLa cells with reduced apoptosis and a high number of viable cells. In vivo levels of ROS en lipid peroxidation decreased over time of treatment with PBA. The fluorescence microscope images confirmed an increased number of peroxisomes after PBA treatment. The short term effect of PBA showed an initial, but small decrease in the levels of the fatty acids, suggesting induction over a longer period rather than activation of peroxisomal B–oxidation. New metabolites of phenylbutyrate were identified in the urine of a vervet monkey. These new metabolites originated from monooxygenase, N–phenylacetyl–glutamine synthases and B–oxidation byproducts. Recently discovered metabolites in humans and rats were also verified and confirmed in the vervet monkey. We therefore propose that treatment with PBA, on account of its beneficial effects of restoring VLCFA levels and reducing oxidative stress, could be considered a novel approach for the treatment of X–ALD. / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2011.
64

The metabolic profile of phenylbutyric acid and its antioxidant capacity in vervet monkeys / Wilhelmina Johanna van der Linde

Van der Linde, Wilhelmina Johanna January 2010 (has links)
X–linked adrenoleukodystrophy (X–ALD) is the most common peroxisomal enzyme deficiency disorder, characterized by inborn mutations in the ABCD1 gene, an ATP–binding cassette (ABC) half–transporter. The ABCD1 gene encodes the adrenoleukodystrophy protein (ALDP), the transporter for the very–long–chain fatty acids (VLCFA; C > 22:0) from the cytosol into the peroxisomes to enter the peroxisomal B–oxidation pathway. The diagnostic disease marker is the elevated levels of VLCFAs which accumulate in different tissues and body fluids, leading to inflammatory demyelination, neuro–deterioration and adrenocortical insufficiency. At present, there is no satisfactory therapy for X–ALD available. However, another peroxisomal ABC half–transporter, ALDRP can compensate for the functional loss of ALDP and is encoded by the ABCD2 gene. This prompted a new approach to treatment strategies. Phenylbutyric acid (PBA) over–expresses the ABCD2 gene, leading to an increased expression of ALDRP and PBA decreases VLCFA levels by increasing peroxisomal B–oxidation. This study had a dual aim: to determine the antioxidant capacity of PBA and to verify known and identify new metabolites of PBA. In vitro, HeLa cells were cultivated and treated with 0.5 mM, 1 mM, 2 mM and 5 mM PBA for 48 hours. The ROS, lipid peroxidation, apoptosis and cell viability were determined using fluorescein–based flow cytometry. Images were taken to visualize the peroxisome proliferation. In vivo, a vervet monkey was given a single dose of 130 mg/kg PBA. Blood was collected before treatment and 15 minutes, 30 minutes, 1, 2 and 3 hours after treatment. ROS, apoptosis and lipid peroxidation were determined by fluorescein–based flow cytometry. Urine was collected before treatment and 15 minutes, 30 minutes, 1, 2, 3, 7 and 24 hours after PBA treatment. A standardised method, employing gas chromatography–mass spectrometry (GC/MS), was used to analyse the organic acids in the urine and fatty acids in the blood. In vitro results showed decreased levels of ROS and lipid peroxidation with increased concentrations of PBA. PBA showed a protective effect towards the HeLa cells with reduced apoptosis and a high number of viable cells. In vivo levels of ROS en lipid peroxidation decreased over time of treatment with PBA. The fluorescence microscope images confirmed an increased number of peroxisomes after PBA treatment. The short term effect of PBA showed an initial, but small decrease in the levels of the fatty acids, suggesting induction over a longer period rather than activation of peroxisomal B–oxidation. New metabolites of phenylbutyrate were identified in the urine of a vervet monkey. These new metabolites originated from monooxygenase, N–phenylacetyl–glutamine synthases and B–oxidation byproducts. Recently discovered metabolites in humans and rats were also verified and confirmed in the vervet monkey. We therefore propose that treatment with PBA, on account of its beneficial effects of restoring VLCFA levels and reducing oxidative stress, could be considered a novel approach for the treatment of X–ALD. / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2011.
65

Efeitos genotóxicos e indução do SOS em mutantes derivados de Escherichia coli K-12 durante o processo de interação com superfícies bióticas e abióticas / Genotoxic and SOS induction in mutants derived from Escherichia coli K-12 during the process of interaction with biotic and abiotic surfaces

Suelen Bozzi Costa 11 December 2012 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / A célula epitelial é o primeiro contato entre os micro-organismos e o hospedeiro. Essa interação pode levar a produção de diversas citocinas, quimiocinas, moléculas inflamatórias e também estimular a geração de espécies reativas de oxigênio (ERO). Neste trabalho avaliamos se a interação com as células HEp-2 poderia ser genotóxica para os mutantes derivados de Escherichia coli K-12 deficientes em algumas enzimas que fazem parte do sistema de reparo por excisão de base (BER). Além disto, avaliamos a expressão do sistema SOS, que é induzido pela presença de danos no genoma bacteriano. Os resultados obtidos mostraram a presença de filamentos, na interação com células HEp-2, principalmente, no mutante xthA (BW9091) e no triplo mutante xthA nfo nth (BW535). Quando a interação foi quantificada na ausência da D-manose, observamos um aumento das bactérias aderidas. Além disto, a quantidade e o tamanho dos filamentos também aumentaram, mostrando que as adesinas manose-sensíveis estavam envolvidas na filamentação bacteriana. Para comprovar se o aumento da filamentação observada neste ensaio foram uma consequência da indução do sistema SOS, desencadeada pela interação com as células HEp-2, quantificamos a expressão do SOS, na presença e na ausência da D-manose. De fato, observamos que a indução do SOS na ausência da D-manose foi maior, quando comparada, com o ensaio realizado na presença de D-manose. Além disto, observamos que a ausência de xthA foi importante para o aumento da filamentação observada na ausência de D-manose. Diante destes resultados, verificamos se a resposta de filamentação ocorreria quando as bactérias interagiam com uma superfície abiótica como o vidro. Observamos também inúmeros filamentos nos mutantes BER, BW9091 e BW535, quando comparados a cepa selvagem AB1157. Essa filamentação foi associada à indução do SOS, em resposta a interação das bactérias com o vidro. Em parte a filamentação e a indução do SOS observadas na interação ao vidro, foram associadas à produção de ERO. Quantificamos também o número de bactérias aderidas e observamos que as nossas cepas formavam biofilmes moderados. Contudo, a formação de biofilme dependia da capacidade da bactéria induzir o sistema SOS, tanto em aerobiose como em anaerobiose. A tensão do oxigênio foi importante para interação dos mutantes BER, uma vez que os mutantes BW9091 e BW535 apresentaram uma quantidade de bactérias aderidas menor em anaerobiose. Contudo, a diminuição observada não estava vinculada a morte dos mutantes BER. Também realizamos microscopia de varredura na cepa selvagem e nos mutantes, BW9091 e BW535 e confirmamos que as três cepas formavam biofilmes tanto em aerobiose como em anaerobiose. Observamos uma estrutura sugestiva de matriz extracelular envolvendo os biofilmes da cepa selvagem AB1157 e do mutante BW9091. No entanto, a formação desta estrutura por ambas as cepas dependia da tensão de oxigênio, pois nos biofilmes formados em anaerobiose essa estrutura estava ausente. Em conclusão, mostramos que na interação das bactérias com a superfície biótica e abiótica, ocorreu lesão no genoma, com indução do SOS e a resposta de filamentação associada. / The epithelial cell is the first contact between microorganisms and host. This interaction results in production of several cytokines, chemokines, and inflammatory molecules by epithelial cells and also stimulate the generation of reactive oxygen species (ROS). In the present study, we have evaluated whether the interaction to HEp-2 cells causes genotoxicity to mutants derived from Escherichia coli K-12 deficient in some enzymes that are part of the system of base excision repair (BER). Moreover, we measured the expression of SOS system, which is induced by the presence of damage to the bacterial genome. Our results showed mainly presence of filamentous bacterial growth in xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) when submitted to HEp-2 cells interaction assays. When experiments were performed in the absence of mannose, data showed enhanced interaction of viable bacteria to HEp-2 cells for all strains tested. Furthermore, the removal of D-mannose resulted in an increase in both number and size of bacterial filamentous forms, indicating the involvement of mannose-sensitive adhesins in the filamentation of these strains. In order to verify whether the increased filamentation growth in this assay was a consequence of SOS induction, triggered by interaction to HEp-2 cells, we measured expression of SOS in the presence and absence of D-mannose. Indeed, we observed higher expression of SOS response in the absence of mannose than in experiments performed in the presence of D-mannose. Moreover, we observed that the absence of xthA was important to filamentation increasing in absence of D-mannose. Based on these results, we verified if interaction to abiotic surfaces, like glass, could lead to filamentation of these strains. We also observed numerous filaments in BER mutants, BW9091 and BW535, when compared to wild-type strain AB1157. The filamentation observed was a consequence of SOS induction, triggered by attachment to the glass surface. In part, the filamentation and SOS induction observed in these experiments were related to ROS production. We also quantified interacted bacterial cells and it was observed moderated biofilm formation in all strains tested. However, biofilm formation depended on the ability of the bacteria to induce the SOS response, under both aerobic and anaerobic conditions. The oxygen tension was important factor for interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, this decrease was not related to BER mutants death. Scanning electron microscopy was also performed in the wild-type strain and BER mutants (BW9091 e BW535) and biofilm formation was confirmed under both aerobic and anaerobic conditions. We observed a structure similar to a extracellular matrix which involved biofilms of wild type strain (AB1157) and xthA mutant (BW9091). However, the formation of this structure by both strains depended on the oxygen tension, since biofilm formation, under anaerobiosis condition, did not presented this structure. In conclusion, was provided that bacterial interaction to biotic and abiotic surfaces can lead to damage of bacterial genome, resulting in SOS induction and associated filamentation.
66

Efeitos genotóxicos e indução do SOS em mutantes derivados de Escherichia coli K-12 durante o processo de interação com superfícies bióticas e abióticas / Genotoxic and SOS induction in mutants derived from Escherichia coli K-12 during the process of interaction with biotic and abiotic surfaces

Suelen Bozzi Costa 11 December 2012 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / A célula epitelial é o primeiro contato entre os micro-organismos e o hospedeiro. Essa interação pode levar a produção de diversas citocinas, quimiocinas, moléculas inflamatórias e também estimular a geração de espécies reativas de oxigênio (ERO). Neste trabalho avaliamos se a interação com as células HEp-2 poderia ser genotóxica para os mutantes derivados de Escherichia coli K-12 deficientes em algumas enzimas que fazem parte do sistema de reparo por excisão de base (BER). Além disto, avaliamos a expressão do sistema SOS, que é induzido pela presença de danos no genoma bacteriano. Os resultados obtidos mostraram a presença de filamentos, na interação com células HEp-2, principalmente, no mutante xthA (BW9091) e no triplo mutante xthA nfo nth (BW535). Quando a interação foi quantificada na ausência da D-manose, observamos um aumento das bactérias aderidas. Além disto, a quantidade e o tamanho dos filamentos também aumentaram, mostrando que as adesinas manose-sensíveis estavam envolvidas na filamentação bacteriana. Para comprovar se o aumento da filamentação observada neste ensaio foram uma consequência da indução do sistema SOS, desencadeada pela interação com as células HEp-2, quantificamos a expressão do SOS, na presença e na ausência da D-manose. De fato, observamos que a indução do SOS na ausência da D-manose foi maior, quando comparada, com o ensaio realizado na presença de D-manose. Além disto, observamos que a ausência de xthA foi importante para o aumento da filamentação observada na ausência de D-manose. Diante destes resultados, verificamos se a resposta de filamentação ocorreria quando as bactérias interagiam com uma superfície abiótica como o vidro. Observamos também inúmeros filamentos nos mutantes BER, BW9091 e BW535, quando comparados a cepa selvagem AB1157. Essa filamentação foi associada à indução do SOS, em resposta a interação das bactérias com o vidro. Em parte a filamentação e a indução do SOS observadas na interação ao vidro, foram associadas à produção de ERO. Quantificamos também o número de bactérias aderidas e observamos que as nossas cepas formavam biofilmes moderados. Contudo, a formação de biofilme dependia da capacidade da bactéria induzir o sistema SOS, tanto em aerobiose como em anaerobiose. A tensão do oxigênio foi importante para interação dos mutantes BER, uma vez que os mutantes BW9091 e BW535 apresentaram uma quantidade de bactérias aderidas menor em anaerobiose. Contudo, a diminuição observada não estava vinculada a morte dos mutantes BER. Também realizamos microscopia de varredura na cepa selvagem e nos mutantes, BW9091 e BW535 e confirmamos que as três cepas formavam biofilmes tanto em aerobiose como em anaerobiose. Observamos uma estrutura sugestiva de matriz extracelular envolvendo os biofilmes da cepa selvagem AB1157 e do mutante BW9091. No entanto, a formação desta estrutura por ambas as cepas dependia da tensão de oxigênio, pois nos biofilmes formados em anaerobiose essa estrutura estava ausente. Em conclusão, mostramos que na interação das bactérias com a superfície biótica e abiótica, ocorreu lesão no genoma, com indução do SOS e a resposta de filamentação associada. / The epithelial cell is the first contact between microorganisms and host. This interaction results in production of several cytokines, chemokines, and inflammatory molecules by epithelial cells and also stimulate the generation of reactive oxygen species (ROS). In the present study, we have evaluated whether the interaction to HEp-2 cells causes genotoxicity to mutants derived from Escherichia coli K-12 deficient in some enzymes that are part of the system of base excision repair (BER). Moreover, we measured the expression of SOS system, which is induced by the presence of damage to the bacterial genome. Our results showed mainly presence of filamentous bacterial growth in xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) when submitted to HEp-2 cells interaction assays. When experiments were performed in the absence of mannose, data showed enhanced interaction of viable bacteria to HEp-2 cells for all strains tested. Furthermore, the removal of D-mannose resulted in an increase in both number and size of bacterial filamentous forms, indicating the involvement of mannose-sensitive adhesins in the filamentation of these strains. In order to verify whether the increased filamentation growth in this assay was a consequence of SOS induction, triggered by interaction to HEp-2 cells, we measured expression of SOS in the presence and absence of D-mannose. Indeed, we observed higher expression of SOS response in the absence of mannose than in experiments performed in the presence of D-mannose. Moreover, we observed that the absence of xthA was important to filamentation increasing in absence of D-mannose. Based on these results, we verified if interaction to abiotic surfaces, like glass, could lead to filamentation of these strains. We also observed numerous filaments in BER mutants, BW9091 and BW535, when compared to wild-type strain AB1157. The filamentation observed was a consequence of SOS induction, triggered by attachment to the glass surface. In part, the filamentation and SOS induction observed in these experiments were related to ROS production. We also quantified interacted bacterial cells and it was observed moderated biofilm formation in all strains tested. However, biofilm formation depended on the ability of the bacteria to induce the SOS response, under both aerobic and anaerobic conditions. The oxygen tension was important factor for interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, this decrease was not related to BER mutants death. Scanning electron microscopy was also performed in the wild-type strain and BER mutants (BW9091 e BW535) and biofilm formation was confirmed under both aerobic and anaerobic conditions. We observed a structure similar to a extracellular matrix which involved biofilms of wild type strain (AB1157) and xthA mutant (BW9091). However, the formation of this structure by both strains depended on the oxygen tension, since biofilm formation, under anaerobiosis condition, did not presented this structure. In conclusion, was provided that bacterial interaction to biotic and abiotic surfaces can lead to damage of bacterial genome, resulting in SOS induction and associated filamentation.
67

Uncovering the Role of Mitochondrial Co-chaperones and Artificial Antioxidants in Cellular Redox Homeostasis

Srivastava, Shubhi January 2016 (has links) (PDF)
The role of mitochondria is multidimensional and ranges in vast areas, including apoptosis, cellular response towards stress, metabolism, which is regulated by a plethora of proteins, acting together to maintain cellular and organellar homeostasis. In spite of the presence of mitochondrial DNA, most of the mitochondrial proteins are nuclear encoded and translocated inside the organelle through dedicated translocases present on outer and inner membrane of mitochondria. To fulfil the cellular energy demand, mitochondria efficiently generate ATP by oxidative phosphorylation, and thus are considered as "power house of cell." There occurs a transfer of electrons from various oxidizable substrates to oxygen, which is achieved by a series of redox reactions with generation of water as a byproduct. This process is coupled with ATP synthesis, involves five protein-complexes present in the inner mitochondrial membrane. During this process, it generates extremely reactive intermediate species of oxygen as a byproduct collectively referred as Reactive Oxygen Species (ROS) through partial reduction of oxygen. These intermediate metabolites of oxygen include superoxide anion (O2-º), H2O2 and highly reactive hydroxyl radicals (OHº). Although ROS are produced by different cellular sources, such as widely expressed and evolutionary conserved NADPH Oxidases, xanthine oxidase, cyclooxygenases, lipoxygenases and cytochrome P450 enzymes but mitochondria are one of the major contributors of cellular ROS. Earlier, reactive oxygen species were considered as harmful but for past few decades, the role ROS has been appreciated as signalling molecules. Because of their high reactivity, these species can cause redox mediated modifications to cellular components and thus have an ability to participate in signalling process. The regulation of signalling pathway by ROS is governed by either alterations in cellular redox conditions or by oxidative modifications of certain residues in proteins, which are involved in signalling cascades. Reactive Oxygen Species can modify amino acid residues, interact with Fe-S clusters or other metal complexes and induce dimerization of proteins to alter protein structure and function. ROS causes modifications to critical amino acids, mainly by oxidation of cysteine residues, where oxidation of sulfhydryl group (-SH) of a single cysteine residue leads to formation of sulfenic (-SOH), sulfinic (-SO2H), sulfonic (-SO3H), or S-glutathionylated (-SSG) derivatives. Thus, by incorporating these modifications, ROS affects the function of proteins, thereby modulating the cellular signalling process. On the other hand, the accumulation of higher level of reactive oxygen species may damage cellular components causing oxidative stress. Therefore, it is necessary to maintain the ROS levels and regulation of intracellular redox homeostasis depends upon a complex network of antioxidant molecules. These antioxidants range from low molecular weight glutathione to large proteins like glutathione peroxidases. Cell has an array of antioxidants with different subcellular locations. Superoxide Dismutase which catalyzes dismutation of superoxides and converts them to H2O2, localizes in cytosol, mitochondrial intermembrane space and extracellular matrix. Different isoforms of Glutatione Peroxidases (GPx) and Peroxiredoxins (Prx) are located in cytosol as well as in mitochondria and scavenge H2O2 by using glutathione (GSH) and thioredoxin (Trx) respectively, as co-factors. During this peroxidase activity of GPx and Prx, GSH and Trx get oxidized and recycled back to the reduced form by Glutathione Reductase (GR) and Thioredoxin Reductase (TR) correspondingly, with the help of NADPH. Thus, GPx system (GPx, GR, GSH and NADPH) and Prx system (Prx, Trx, TR and NADPH) helps in maintenance of redox balance by scavenging H2O2. Catalase is present in peroxisomes for the catalytic degradation of H2O2. Along with Thioredoxin, glutaredoxin (Grx) also reduces protein disulphides and maintains the redox homeostasis. Although, reactive oxygen species are important for normal physiological process, oxidative stress caused by imbalanced ROS levels is thought to be involved in progression of many disorders. However, in most of the diseases, the role of ROS is not yet clear. Elevated oxidative stress is observed with insulin resistance and progression of type II diabetes mellitus, and the resultant high glucose levels alter mitochondrial physiology, leading to the fragmentation of organelle. However, on contrary it has also been observed that ROS improves insulin sensitivity. ROS is directly involved in progression of neurodegenerative disorders, which are characterized by oxidative stress mediated neuronal loss. Interestingly, in case of cancer ROS plays a differential role. At moderately higher levels, ROS helps cancer cells to detach from the matrix and thus assist in metastasis but the higher accumulation of ROS leads to oxidative stress mediated cell death. Thus, cancer cells have an enhanced expression level of antioxidants to maintain the optimum ROS concentration for their survival and proliferation. The role of ROS in cellular signalling and progression of diseases highlights the importance of redox regulation. Mitochondria being the major source of ROS, harbours various redox regulators such as a mitochondrial permeability transition pore (mPTP), inner membrane anion channel (IMAC), Ca++ ions, etc. In addition, certain proteins like Hsp31/DJ1 class also translocate into the organelle in a stress dependent manner to maintain redox homeostasis. These proteins are encoded by the nuclear genome and translocated in the organelle, suggesting the importance of mitochondrial import machinery in regulation of redox balance. Another such example is MIA pathway of protein import, where MIA40 regulates ROS indirectly by catalyzing folding of disulfide containing proteins such as SOD-1 in a redox coupled process. However, under most cases, the physiological disorders lead to uncontrolled production of reactive oxygen species, thereby overloading the cellular antioxidant defence machinery. The failure of the antioxidant machinery leads to enhanced disease progression. Under such disease conditions where the upheaval of redox homeostasis leads to the accumulation of ROS, artificial antioxidants can be used to protect cells against oxidative damage. Artificial systems such as Cyclodextrins, metal complexes, porphyrins, polymers, supramolecules and biomolecules such as nucleic acids, catalytic antibodies and proteins, have been created to mimic the structures and functions of natural enzymes through various approaches. In the present thesis, we have elucidated the role of two mitochondrial proteins, which are part of mitochondrial import motor, as redox regulators and the effect of artificial antioxidants in maintenance of redox homeostasis under stress. A detailed description on importance of ROS in cellular signalling and disease progression has been included in Chapter I, which gives a preface for the work mentioned in this thesis. Chapter II to chapter V elucidates the main objectives of the present thesis, which are: 1. Identification of novel human mitochondrial regulators of redox homeostasis • Role of NEF in redox sensing (Chapter II) • Evolved function of J-like protein in ROS regulation (Chapter III) 2. Characterization of potential artificial antioxidants as redox therapeutics • Organo-selenium compounds as potential artificial antioxidants (Chapter IV) • Use of nanoparticles as a natural antioxidant mimics (Chapter V) Chapter II: Mitochondrial Hsp70 (mtHsp70) plays a critical role for the import of the precursor proteins. The import activity of mtHsp70 is attributed by cyclic binding and release of precursor proteins which in turn is regulated by co-chaperones J-proteins and nucleotide exchange factor (NEF). The affinity for substrate is governed by the binding of ADP or ATP at the N-terminal nucleotide binding pocket of mtHsp70. The affinity for substrate is higher in ADP bound state as compared to ATP bound state. mtHsp70 by its ATPase activity hydrolyze ATP (low-affinity state) to ADP (high-affinity state), which is replaced back to ATP by NEF thus maintaining the mtHsp70 cycle for protein import. In the present study, we have biochemically and functionally characterized GrpEL1 and GrpEL2 as a nucleotide exchange factor for mtHsp70. We observed that like their yeast ortholog Mge1, both the mammalian NEFs interacts with mtHsp70 and exchange ADP from ATP to maintain the cycle of mtHsp70. Interestingly, we observed that both the NEFs are part of human mitochondrial import motor and are recruited at the import motor as hetero-subcomplex. The formation of GrpEL1-EL2 hetero-subcomplex is important to maintain the stability of both the NEFs. In this study, we have elucidated that the interplay between the two NEFs governs organellar response towards oxidative stress. Chapter III: Redox imbalance generates multiple cellular damages leading to oxidative stress mediated pathological conditions such as neurodegenerative diseases, diabetes, ageing and cancer progression. Therefore, maintenance of ROS homeostasis is most important, that involves well-defined antioxidant machinery. In the present chapter, we have identified for first time a component of mammalian protein translocation machinery, Magmas, to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues, cancer cells and tissues of developmental origin that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance towards oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of ETC-complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as an ROS sensor was found to be independent of its role in protein import, underlying its dual role in human mitochondria. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cellular tolerance to oxidative stress even in yeast model organism. The cyto-protective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress related diseases. Chapter IV: The dysregulation of antioxidant machinery in oxidative stress mediated disorders lead to accumulation of excess ROS, highlighting the importance of artificial antioxidants. For the therapeutics of oxidative stress related disorders, artificial antioxidants have been used as combination redox therapy. In order to realize potent biocompatible antioxidants with minimum toxicity, we have utilized two approaches – synthesis of organic compounds and nanoparticle based enzyme mimetics. We have synthesized novel isoselenazoles with high glutathione peroxidase (GPx) and peroxiredoxin (Prx) activities, which provide remarkable cytoprotection to human cells, mainly by exhibiting antioxidant activities in the presence of cellular thiols. The cytotoxicity of the isoselenazoles is found to be significantly lower than that of ebselen, which is being widely clinically evaluated by several research groups for the treatment of reperfusion injuries and stroke, hearing loss, and bipolar disorder. The compounds reported in this study has the potential to be used as therapeutic agents for disorders mediated by reactive oxygen species.. Chapter V: Nanomaterials with enzyme-like properties have attracted significant interest, although limited information is available on their biological activities in cells. Here, we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme, glutathione peroxidase by using cellular glutathione as a co-factor. Although a bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origins (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species, when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson’s and Alzheimer’s disease.
68

Investigations on the in vitro effects of aqueous Eurycoma longifolia Jack extract on male reproductive functions

Erasmus, Nicolete January 2012 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / Introduction: Eurycoma longifolia (Tongkat Ali; TA) is a Malaysian shrub used to treat various illnesses including male infertility. Considering that TA is also used to improve male fertility and no report regarding its safety has been published, this study investigated the effects of a patented, aqueous TA extract on various sperm and testicular functions. Materials and Methods: This study encompasses two parts (part 1: on spermatozoa; part 2: on TM3-Leydig and TM4-Sertoli cells). Part 1: Semen samples of 27 patients and 13 fertile donors were divided into two groups, washed and swim-up prepared spermatozoa, and incubated with different concentrations of TA (1, 10, 20, 100, 2000 μg/ml) for 1 hour at 37°C. A sample without addition of TA served as control. After incubation with TA, the following parameters were evaluated: viability (Eosin-Nigrosin test), total and progressive motility (CASA), acrosome reaction (triple stain technique), sperm production of reactive oxygen species (ROS; dihydroethidium test; DHE), sperm DNA fragmentation (TUNEL assay) and mitochondrial membrane potential (Δψm) (Depsipher kit). Part 2: TM3-Leydig and TM4-Sertoli cells incubated with different concentrations of TA (0.4, 0.8, 1.6, 3.125, 6.25, 12.5, 25, 50 μg/ml) and control (without extract) for 48 and 96 hours. After incubation with TA, the following parameters were evaluated: viability (XTT), cell proliferation (protein assay), testosterone (testosterone ELISA test) and pyruvate (pyruvate assay). Results Part 1: For washed spermatozoa, significant dose-dependent trends were found for viability, total motility, acrosome reaction and sperm ROS production. However, these trends were only significant if the highest concentrations were included in the calculation. In the swim-up spermatozoa, ROS production of spermatozoa showed a biphasic relationship with its lowest percentage at 10 μg/ml, yet, no significance could be observed (P=0.9505). No influence of TA could be observed for sperm DNA fragmentation nor Δψm. Part 2: The viability rates and protein production of TM3-Leydig and TM4-Sertoli cells at 48-hour exposure to TA showed increases whereas at 96-hour incubation periods viability and protein production declined especially as from concentration 25 μg/ml TA. Similar results could be seen for TM4-Sertoli cells pyruvate production. The testosterone production at 48-hour exposure marginally increased (P=0.0580) at the highest (50 μg/ml) concentration of TA. However, at 96-hour exposure to TA the testosterone production significantly (P=0.0065) increased. It is also apparent that after 96 hours the concentration of testosterone has increased [12 x 10-4 ng/ml] when compared to 48-hour exposure [6 x 10-7ng/ml] of Tongkat Ali. Conclusion: Part 1: Results indicate that the Tongkat Ali extract has no deleterious effects on sperm functions at therapeutically used concentrations (<2.5 μg/ml). Part 2: The cytotoxic effect of TA are only presented at higher concentration from 25 μg/ml. TM3-Leydig cells appears to be more resilient than TM4-Sertoli cells in viability and protein production yet at prolonged periods of exposure it is detrimental. Testosterone production only increases after 96 hours exposure to TA.
69

Deciphering the Mechanisms of AMPK Activation upon Anchorage- Deprivation

Sundararaman, Ananthalakshmy January 2016 (has links) (PDF)
AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis in cells. It has been implicated as a therapeutic target for various metabolic diseases like type II diabetes and obesity. However, its role in cancer is context-dependent and therefore warrants further studies to explore its possible use as a therapeutic target. AMPK can either promote or retard the growth of cancer cells depending on other cues and stresses in the milieu of the cancer cells. This study aims to understand AMPK signalling in response to extracellular cues of matrix deprivation and matrix stiffness that are important determinants of metastasis. 1) Calcium-Oxidant Signalling Network Regulates AMPK Activation upon Matrix Deprivation. Recent work from our lab, as well as others, has identified a novel role for the cellular energy sensor AMP-activated protein kinase in epithelial cancer cell survival under matrix deprivation. However, the molecular mechanisms that activate AMPK upon matrix-detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, while re-attachment to the matrix leads to its dephosphorylating and inactivation. Since matrix-detachment leads to loss of integrin signalling, we investigate whether integrin signalling negatively regulates AMPK activation. However, modulation of FAK or Src, the major downstream components of integrin signalling, fails to cause a corresponding change in AMPK signalling. Further investigations reveal that the upstream AMPK kinases, LKB1 and CaMKKβ, contribute to AMPK activation upon detachment. Additionally, we show LKB1 phosphorylation and cytosolic translocation upon matrix deprivation, which might also contribute to AMPK activation. In LKB1-deficient cells, we find AMPK activation to be predominantly dependent on Caskβ. We observe no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment is not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signalling and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that ER calcium release induced store-operated calcium entry (SOCE) contributes to intracellular calcium increase, leading to ROS production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. We find a significant increase in LKB1 as well as pACC levels in breast tumour tissues in comparison to normal tissues. Further, we observe a significant correlation between LKB1 and pACC levels in breast tumour tissues suggesting that LKB1-AMPK signaling pathway is active in vivo in breast cancers. Thus, the Ca2+/ROS triggered LKB1/CaMKK-AMPK signalling cascade may provide a quick, adaptable switch to promote survival of metastasising cancer cells. 2) Extracellular Matrix Stiffness Regulates Stemless through AMPK. Cancer cells experience changes in extracellular matrix stiffness during cancer progression. However, the signalling pathways utilised in sensing matrix stiffness are poorly understood. In this study, we identify AMPK pathway as a possible mechanosensory pathway in response to matrix stiffness. AMPK activity, as measured by downstream target phosphorylation, is found to be higher in soft matrix conditions. We additionally show that compared to stiff matrices, soft matrices increase stemless properties, as evidenced by the increased expression of stemless markers, which is dependent on AMPK activity. Thus, we elucidate a novel mechanotransduction pathway triggered by matrix stiffness that contributes to stemness of cancer cells by regulating AMPK activity. Taken together, our study identifies a novel calcium-oxidant signaling network in the rapid modulation of AMPK signaling in the context of matrix detachment. This pathway is especially relevant in the context of metastasising cancer cells that may not face energy stress in the blood stream but are matrix-deprived. Inhibition of AMPK might compromise the viability of these circulating cells thereby reducing the metastatic spread of cancer. Our study further suggests that varying stiffnesses experienced by cancer cells can modulate AMPK activity and this, in turn, regulates stem-like properties. Thus our study provides novel insights into various extracellular cues that regulate this kinase and contribute to cell survival and metastasis. This knowledge can be utilised in the stage-specific use of AMPK inhibitors in the treatment of breast cancer patients.
70

Physicochemical and biopharmaceutical characterization of novel derivatives of gallic acid

Alhyari, Dania H. January 2022 (has links)
Gallic acid is a known antioxidant and has anti-inflammatory activity in addition to other biological activities, but GA efficiency is restricted due to low permeability and low oral bioavailability. This study was designed to investigate the solubility, permeability, oral bioavailability, enzymatic stability with cytochrome CYP2D6, antioxidant and anti-inflammatory activity of novel gallic acid sulfonamide derivatives; TMBS, and THBS. In addition, a novel in silico permeability model was designed to predict the permeability and bioavailability of eighty derivatives of GA. In sillico prediction of intestinal permeability of GA derivative indicated an increase in permeability with increased lipophilicity and decreased aqueous solubility, replacing the carboxylic group with sulfonamide group has increased intestinal permeability. A significant (P <0.01) increase was observed in the permeability of TMBS and THBS over GA, in both gastric fluids and HIEC cells. TMBS was O-demethylated by CYP2D6. TMBS had greater ROS scavenging activity than GA in HIEC-6 cells. There was a significant (P< 0.05) increase in anti-inflammatory activity of THBS, and TMBS compared to ibuprofen. TMBS, and THBS had better oral bioavailability than GA. This data suggests that the in silico permeability model can be used in the future to study new candidate of gallic acid, and further in vivo and clinical investigations are required to introduce TMBS and THBS as a new antioxidant and anti-inflammatory drugs.

Page generated in 0.0362 seconds