Spelling suggestions: "subject:"[een] RENEWABLE ENERGY"" "subject:"[enn] RENEWABLE ENERGY""
521 |
Aerodynamic Design And Optimization Of Horizontal Axis Wind Turbines By Using Bem Theory And Genetic AlgorithmCeyhan, Ozlem 01 September 2008 (has links) (PDF)
An aerodynamic design and optimization tool for wind turbines is developed by using both Blade Element Momentum (BEM) Theory and Genetic Algorithm. Turbine blades are optimized for the maximum power production for a given wind speed, a rotational speed, a number of blades and a blade radius. The optimization variables are taken as a fixed number of sectional airfoil profiles, chord lengths, and twist angles along the blade span. The airfoil profiles and their aerodynamic data are taken from an airfoil database for which experimental lift and drag coefficient data are available. The BEM analysis tool developed is first validated with the experimental data for low wind speeds. A 100 kW wind turbine, which is used in the validation, is then optimized. As a result of the optimization, the power production is improved by 40 to 80 percent. The optimization methodology is then employed to design a 1MW wind turbine with a 25m radius.
|
522 |
Numerical Modeling And Performance Analysis Of Solar-powered Ideal Adsorption Cooling SystemsTaylan, Onur 01 May 2010 (has links) (PDF)
Energy consumption is continuously increasing around the world and this situation yields research to find sustainable energy solutions. Demand for cooling is one of the reasons of increasing energy demand. This research is focused on one of the sustainable ways to decrease energy demand for cooling which is the solar-powered adsorption cooling system. In this study, general theoretical performance trends of a solar-powered adsorption cooling system are investigated using TRNSYS and MATLAB. Effects of different cycle enhancements, working pairs, operating and design conditions on the performance are analyzed through a series of steady and seasonal-transient simulations. Additionally, a normalized model is presented to investigate the effects of size of the system, need for backup power, collector area and mass of adsorbent. Results are presented in terms of values and ratios of cooling capacity weighted COP. For the conditions explored, the thermal wave cycle, wet cooling towers, high evaporation temperatures and evacuated tube collectors produced the highest COP values. Moreover, the heat capacity of the adsorbent bed and its shell should be low for the simple and heat recovery cycles and the adsorbent bed should be cooled down to the condensation temperature for all cases to achieve the highest possible COP. The selection of working pair should depend on the temperature of the available heat source (solar energy in this study) since each working pair has a distinct operating temperature range. Furthermore, there is always a need for backup power for the analyzed location and the system.
|
523 |
Critical Evaluation Of The Energy Resources Of Turkey With Respect To The World ProspectsAydemir, Mehmet Olcay 01 June 2010 (has links) (PDF)
Existing petroleum and natural gas reserves, which are the major supplies of primary energy demand of the world, are cumulated in a few countries. This causes a serious supply security problem for many countries. On the other side, greenhouse gas emissions caused by mainly fossil fuels are gradually increasing to a point which jeopardizes the future of the earth. By now, countries have to consider both their supply security and this global environmental problem while planning their energy future. For Turkey, a developing country, economic growth is to be added as a third parameter of the solution of this energy equation. In this study, firstly, Turkey' / s existing fossil and alternative energy resources potential is examined. In the second part, international acts against climate change problem and Turkey' / s position in this issue is analyzed. In the third part, the relation between economic growth, energy and environment is discussed. Finally, in consideration with supply security, climate change and economic growth, a brief analyze for Turkey is performed. Study shows that these three parameters are strongly interconnected, especially for fossil resources this leads to some conflictual situations. Comparing with OECD countries, energy is an important factor for economic growth in Turkey. Depending on this fact, Turkey can better give priority to supply security and take an environmental responsibility appropriate to its special condition. It is concluded that Turkey should start with the emission mitigation methods which do not threaten the supply security much, such as forestation, energy conservation and efficiency. Since coal is predicted to continue its popularity in the future, clean coal technologies and carbon capture-storage options gain more importance. For long term, state-sanctioned utilization of renewable resources and carefully planned nuclear development are found to be the most promising solutions for replacing coal and imported natural gas in power generation.
|
524 |
Evaluation And Comparison Of The Wave Energy Potential In Selected Coastal Regions In TurkeyDuman, Cagatay 01 September 2010 (has links) (PDF)
In order to meet energy needs in world, studies on wave energy, alternative energy, are becoming more and more important with each passing day. The purpose of this study is to identify the wave energy potential along the coastline of Turkey. For this purpose, the data of wind speed and direction, swell and wind wave height, period and direction for certain duration with the six hours time intervals are obtained from ECMWF for the wind and wave climate computations. In order to compute the wind and wave climate at any selected coastal location, software is developed by Serhan Aldogan in his MSc thesis. By the help of the specifically developed software, for every location, by utilizing existing wind data, depending on geographical location of station, in the direction of energy thought to produce, by using calculated average wind speed of storm which is above the selected wind speed u0, characteristics (Hs / Tm) of the waves of this storm and power (P, W/m) per unit length will be calculated. The duration curves for power, Hs and T, can be obtained. The duration curve represents the occurrence of the parameter (wave height, wave period, wave energy or wave power). It can also be called occurrence curve or availability curve. From these curves, for various percentages of the total storm duration, P, Hs and T&rsquo / s values can be determined. Also, in the analysis, the shapes of these curves can provide important information about the available wave energy for the selected coasts.
|
525 |
Simulations Of A Large Scale Solar Thermal Power Plant In Turkey Using Concentrating Parabolic Trough CollectorsUsta, Yasemin 01 December 2010 (has links) (PDF)
In this study, the theoretical performance of a concentrating solar thermal electric system (CSTES) using a field of parabolic trough collectors (PTC) is investigated. The commercial software TRNSYS and the Solar Thermal Electric Components (STEC) library are used to model the overall system design and for simulations. The model was constructed using data from the literature for an existing 30-MW solar electric generating system (SEGS VI) using PTC&rsquo / s in Kramer Junction, California. The CSTES consists of a PTC loop that drives a Rankine cycle with superheat and reheat, 2-stage high and 5-stage low pressure turbines, 5-feedwater heaters and a dearator. As a first approximation, the model did not include significant storage or back-up heating. The model&rsquo / s predictions were benchmarked against published data for the system in California for a summer day. Good agreement between the model&rsquo / s predictions and published data were found, with errors usually less than 10%. Annual simulations were run using weather data for both California and Antalya, Turkey. The monthly outputs for the system in California and Antalya are compared both in terms of absolute monthly outputs and in terms of ratios of minimum to maximum monthly outputs. The system in Antalya is found to produce30 % less energy annually than the system in California. The ratio of the minimum (December) to maximum (July) monthly energy produced in Antalya is 0.04.
|
526 |
Understanding The Role Of Renewable Energy In A Rentier State: The Example Of United Arab EmiratesAtalay, Yasemin 01 June 2011 (has links) (PDF)
The overall purpose of this thesis can be put as the search for the prospects of the establishment of a renewable energy paradigm in a conventional example of an oil-rich state. The sample actor of the oil paradigm is chosen as the United Arab Emirates, as it represents the overall character of the Arab Gulf region, as well as being an appropriate example of what is termed as the &lsquo / rentier state&rsquo / . Within this framework, firstly it is aimed to shed light on the negative impacts of the oil paradigm in terms of economic problems, social imbalances, and environmental consequences. Secondly, it is sought to answer the question of what has been done for the incorporation of a renewable energy policies into various aspects of Emirati governance, ever since the country&rsquo / s independence in 1971. Thirdly, the causal relationship between the country&rsquo / s renewable energy policies and certain positive outcomes will be highlighted. This thesis would be informative to show whether United Arab Emirates could be a model for other rentier states of the region and beyond, towards the embracing of renewable energy paradigm in the face of depleting oil resources.
|
527 |
Terrain Modeling And Atmospheric Turbulent Flowsolutions Based On Meteorological Weather Forecast DataLeblebici, Engin 01 February 2012 (has links) (PDF)
In this study, atmospheric and turbulent flow solutions are obtained using meteorological flowfield and topographical terrain data in high resolution. The terrain topology of interest, which may be obtained in various resolution levels, is accurately modeled using structured or unstructured grids depending on whether high-rise building models are present or not.
Meteorological weather prediction software MM5, is used to provide accurate and unsteady boundary conditions for the solution domain. Unsteady turbulent flow solutions are carried out via FLUENT with the help of several User Defined Functions developed.
Unsteady flow solutions over topographical terrain of METU campus are computed with 25m x 25m x 15m resolution using structured grids. These FLUENT solutions are compared with the MM5 solutions. Also, the accuracy of the boundary layer velocity profiles is assessed. Finally, effects of surface roughness model extracted from MM5 for the region of interest is investigated.
In addition, unsteady flow solutions over METU campus are repeated in presence of high-rise building models using unstructured grids with resolution varying from 5 meters around buildings to 80 meters further away.
The study shows that unsteady, turbulent flow solutions can be accurately obtained using low resolution atmospheric weather prediction models and high resolution Navier-Stokes solutions over topographical terrains.
|
528 |
Modeling And Performance Evaluation Of An Organic Rankine Cycle (orc) With R245fa As Working FluidBamgbopa, Musbaudeen Oladiran 01 July 2012 (has links) (PDF)
This thesis presents numerical modelling and analysis of a solar Organic Rankine Cycle
(ORC) for electricity generation. A regression based approach is used for the working fluid
property calculations. Models of the unit&rsquo / s sub-components (pump, evaporator, expander
and condenser) are also established. Steady and transient models are developed and
analyzed because the unit is considered to work with stable (i.e. solar + boiler) or variable
(i.e. solar only) heat input. The unit&rsquo / s heat exchangers (evaporator and condenser) have
been identified as critical for the applicable method of analysis (steady or transient). The
considered heat resource into the ORC is in the form of solar heated water, which varies
between 80-95 0C at a range of mass flow rates between 2-12 kg/s. Simulation results of
steady state operation using the developed model shows a maximum power output of
around 40 kW. In the defined operation range / refrigerant mass flow rate, hot water mass
flow rate and hot water temperature in the system are identified as critical parameters to
optimize the power production and the cycle efficiency. The potential benefit of controlling
these critical parameters is demonstrated for reliable ORC operation and optimum power
production. It is also seen that simulation of the unit&rsquo / s dynamics using the transient model is
imperative when variable heat input is involved, due to the fact that maximum energy
recovery is the aim with any given level of heat input.
|
529 |
A Study On The Catalytic Pyrolysis And Combustion Characteristics Of Turkish Lignite And Co-processing Effects With Biomass Under Various Ambient ConditionsEhsan, Abbasi Atibeh 01 August 2012 (has links) (PDF)
In this study the catalytic pyrolysis and combustion characteristics of Turkish coal samples in O2/N2 and O2/CO2 (oxy-fuel conditions) ambient conditions were explored and the evolution of emissions during these tests was investigated using non-isothermal Thermo-gravimetric Analysis (TGA) technique combined with Fourier Transform Infrared (FTIR) spectroscopy. Potassium carbonate (K2CO3), calcium hydroxide (Ca(OH)2), iron (III) oxide (Fe2O3) and iron (III) chloride (FeCl3) were employed as precursors of catalysts to investigate the effects of potassium (K), calcium (Ca) and iron (Fe). Furthermore the effects of these catalysts on calorimetric tests of Turkish coal samples were investigated.
TGA-FTIR pyrolysis tests were carried out in 100 % N2 and 100 % CO2 ambient conditions which are the main diluting gases in air and oxy-fuel conditions. Lignite pyrolysis tests revealed that the major difference between pyrolysis in these two ambient conditions was observed beyond 720
|
530 |
A Study on Peak Load Shaving Strategy for Distributed Generation Series Grid Interconnection ModuleHuang, Ching-Chih 28 August 2008 (has links)
This thesis presents the application of a series interconnection module for small distributed generation (DG) or renewable energy systems integration in the distribution network. The concept used one set of voltage source converter (VSC) with battery energy storage system to control the injected voltage magnitude and phase angle for power injection and voltage sag mitigation applications. Through an energy storage device and the VSC, the module allows storage of surplus energy during off peak period and release for use during daytime peak load period, therefore, exhibits a load leveling characteristic. Due to its series connection characteristic, it is convenient in preventing islanding operation and suitable for voltage sag mitigation. The concept is suitable for locations where the voltage phase shift is not a problem. Due to the use of only one set of VSC, it is economic for customer site distributed energy resource applications.
|
Page generated in 0.0319 seconds