• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 698
  • 367
  • 265
  • 70
  • 62
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 18
  • 10
  • 10
  • 8
  • Tagged with
  • 1802
  • 376
  • 341
  • 165
  • 156
  • 146
  • 143
  • 110
  • 104
  • 99
  • 96
  • 86
  • 83
  • 82
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
581

Rheological Properties of Peanut Paste and Characterization of Fat Bloom Formation in Peanut-Chocolate Confectionery

Buck, Vinodini 05 May 2010 (has links)
Fat bloom in chocolates is the gray-white discoloration and dullness that can occur on the surface of the confectionery. Fat bloom is a common quality defect that can result from temperature fluctuations during storage. Chocolates candies with peanuts or other nut fillings are more prone to fat bloom compared to plain chocolates, due to a release of incompatible nut oils into the chocolate matrix. The overall goal of this study was to determine if differences in triacylglycerol (TAG) composition and rheological properties of high, medium, and normal oleic peanuts influence fat bloom formation. All three peanut varieties showed high concentrations of triolein. Normal oleic peanuts had a slightly higher trilinolein than high and medium oleic peanuts, which contained trilinolein in trace amounts. Peanut pastes from the three peanut varieties all had a minimum apparent yield stress, and all pastes showed varying degrees of shear thinning. The apparent yield stress of high and normal oleic pastes was higher than the apparent yield stress of medium oleic paste. The absolute value of the flow index behavior was 1 for the high oleic peanut paste, suggesting friction in the experimental apparatus, even with use of Teflon plates. The peanut chocolate candies took around 45 days for significant dulling of the chocolates with temperature cycling between 26-29 °C approximately every 26 hours. Optical microscopy scans showed differences in glossiness and surface textural attributes of the unbloomed and bloomed peanut chocolate confectionery. Consumer evaluation showed some differences in the glossiness and significant differences in surface texture of unbloomed and bloomed chocolates. A majority (62%) of the survey respondents had seen whitish discoloration in chocolates and 40% of the respondents thought this is because the chocolate had grown old. / Ph. D.
582

Flow Behavior of Sparsely Branched Metallocene-Catalyzed Polyethylenes

Doerpinghaus, Phillip J. Jr. 26 August 2002 (has links)
This work is concerned with a better understanding of the influences that sparse long-chain branching has on the rheological and processing behavior of commercial metallocene polyethylene (mPE) resins. In order to clarify these influences, a series of six commercial polyethylenes was investigated. Four of these resins are mPE resins having varying degrees of long-chain branching and narrow molecular weight distribution. The remaining two resins are deemed controls and include a highly branched low-density polyethylene and a linear low-density polyethylene. Together, the effects of long-chain branching are considered with respect to the shear and extensional rheological properties, the melt fracture behavior, and the ability to accurately predict the flow through an abrupt 4:1 contraction geometry. The effects that sparse long-chain branching (M<sub>branch</sub> > M<sub>c</sub>) has on the shear and extensional rheological properties are analyzed in two separate treatments. The first focuses on the shear rheological properties of linear, sparsely branched, and highly branched PE systems. By employing a time-molecular weight superposition principle, the effects of molecular weight on the shear rheological properties are factored out. The results show that as little as 0.6 LCB/10⁴ carbons (<1 LCB/molecule) significantly increases the zero-shear viscosity, reduces the onset of shear-thinning behavior, and increases elasticity at low deformation rates when compared to linear materials of equivalent molecular weight. Conversely, a high degree of long-chain branching ultimately reduces the zero-shear viscosity. The second treatment focuses on the relationship between long-chain branching and extensional strain-hardening behavior. In this study, the McLeish-Larson molecular constitutive model is employed to relate long-chain branching to rheological behavior. The results show that extensional strain hardening arises from the presence of LCB in polyethylene resins, and that the frequency of branching in sparsely branched metallocene polyethylenes dictates the degree of strain hardening. This observation for the metallocene polyethylenes agrees well with the proposed mechanism for polymerization. The presence of long-chain branching profoundly alters the melt fracture behavior of commercial polyethylene resins. Results obtained from a sparsely branched metallocene polyethylene show that as few as one long-chain branch per two molecules was found to mitigate oscillatory slip-stick fracture often observed in linear polyethylenes. Furthermore, the presence and severity of gross melt fracture was found to increase with long-chain branching content. These indirect effects were correlated to an early onset of shear-thinning behavior and extensional strain hardening, respectively. Conversely, linear resins exhibiting a delayed onset of shear-thinning behavior and extensional strain softening were found to manifest pronounced slip-stick fracture and less severe gross melt fracture. The occurrence of surface melt fracture appeared to correlate best with the degree of shear thinning arising from both molecular weight distribution and long-chain branching. The ability to predict the flow behavior of long-chain branched and linear polyethylene resins was also investigated. Using the benchmark 4:1 planar contraction geometry, pressure profile measurements and predictions were obtained for a linear and branched polyethylene. Two sets of finite element method (FEM) predictions were obtained using a viscoelastic Phan-Thien/Tanner (PTT) model and an inelastic Generalized Newtonian Fluid (GNF) model. The results show that the predicted profiles for the linear PE resin were consistently more accurate than those of the branched PE resin, all of which were within 15% of the measured vales. Furthermore, the differences in the predictions provided by the two constitutive models was found to vary by less than 5% over the range of numerical simulations obtained. In the case of the branched PE resin, this range was very narrow due to loss of convergence. It was determined that the small differences between the PTT and GNF predictions were the result of the small contraction ratio utilized and the long relaxation behavior of the branched PE resin, which obscured the influence of extensional strain hardening on the pressure predictions. Hence, it was expected that numerical simulations of the 4:1 planar contraction flow for the mildly strain hardening metallocene polyethylenes would not be fruitful. / Ph. D.
583

Material Extrusion based Additive Manufacturing of Semicrystalline Polymers: Correlating Rheology with Print Properties

Das, Arit 09 September 2022 (has links)
Filament-based material extrusion (MatEx) additive manufacturing has garnered huge interest in both academic and industrial communities. Moreover, there is an increasing need to expand the material catalog for MatEx to produce end use parts for a wide variety of functional applications. Current approaches towards MatEx of semicrystalline thermoplastics are in their nascent stage with fiber reinforcements being one of the most common techniques. MatEx of commodity semicrystalline thermoplastics has been investigated but most of the current methods are extremely material and machine specific. The goal of this dissertation is to enable MatEx of semicrystalline polymers with mechanical properties approaching that of injection molded parts. Tailored molecular architectures of blends that can control the crystallization kinetics from the melt state are investigated. By modifying the crystallization time window, the time during which chain diffusion can occur across the deposited layers is prolonged, which allows for a stronger bond between layers. Such differences in the crystallization process impact the z-axis adhesion and residual stress state, which directly affect mechanical properties and warpage in the printed parts. The impact of blend composition on polymer chain diffusion, crystallization profiles, and print properties resulting from the repeated non-uniform thermal history in filament based MatEx is studied. The melt flow behaviour is characterized using rheology and its effect on the interlayer adhesion of printed parts and print precision is explored. The extent of polymer chain re-entanglement post deposition on the printer bed is quantitatively determined using interrupted shear rheology protocols. Tensile bars are printed and mechanically characterized to analyze the tensile performance of the printed parts. Correlating the rheological findings with the mechanical performance of the printed parts provides valuable insights into the complex interlayer welding process during MatEx and is critical to improving existing machine designs and feedstocks in order to achieve printed parts with properties approaching their injection molded counterparts. The results will be essential in identifying optimal processing conditions to maximize material specific printed part performance as well as highlight the associated limitations to enable MatEx of next generation materials. / Doctor of Philosophy / Compared to traditional subtractive manufacturing techniques, additive manufacturing (AM) has the potential to transform modern manufacturing capabilities due to its unique advantages including design flexibility, mass customization, energy efficiency, and economic viability. The filament-based material extrusion (MatEx), also referred to as fused filament fabrication (FFF), employing thermoplastic polymers (and composites) has emerged as one of the most common AM modality for industrial adoption due to its operational simplicity. However, the widespread application of MatEx has been limited due to the lack of compatible materials, anisotropic mechanical properties, and lack of quality assurance. Most of the research on FFF has been performed on amorphous polymers with almost negligible levels of crystalline content such as polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS). Semicrystalline polymers are an attractive choice for FFF feedstocks compared to the amorphous ones due to their improved thermal resistance, toughness, and deformability. However, processing semicrystalline polymers using FFF is challenging due to the volumetric shrinkage encountered during crystallization from the melt state. This results in the buildup of significant levels of residual stresses at temperatures lower than the crystallization temperature of the polymer resulting in warpage of the printed parts. The research presented in this dissertation aims to address the aforementioned challenges by characterizing semicrystalline polymer feedstocks under conditions representative of the multiphysics encountered during a typical FFF process. Several strategies to limit shrinkage and warpage are discussed that involve tuning the thermal profile and crystallization kinetics during printing. The former is achieved by addition of thermally conductive carbon fiber reinforcements while the latter is realized by blending amorphous resins or low crystallinity polymers to the semicrystalline polymer matrix. The fibers results in a more homogenous temperature distribution during printing while the incorporation of the resins modify the rate of crystallization; both of which play a pivotal role in reducing the residual stress build-up and hence minimizing the warpage during printing. The printability of the materials is investigated based on the shear- and temperature dependent viscous response of the polymers. The printed parts with fiber reinforcements exhibit high levels of mechanical anisotropy compared to the blends with the resins, likely due to differences in polymer chain mobility at the interface. The tensile properties of the printed polymer blends are slightly inferior to those obtained using traditional manufacturing techniques; however, properties close to 90-95% of injection molded properties are recovered through a simple post-processing thermal annealing step. The obtained results will assist in optimizing the processing parameters and feedstock formulation in order to consistently produce printed parts with minimal defects and tailored mechanical properties for functional applications.
584

The Role of Branching Topology on Rheological Properties and its Effect on Film-Casting Performance

Seay, Christopher Wayne 10 June 2008 (has links)
With this research, we work towards the overall objective of customizing polymer molecules in terms of their molecular structure to optimize processing performance. The work includes analysis of the rheology in shear and shear-free flows for sparsely long-chain branched, LCB, polyethylene, PE, resins; determination of the consistency of the molecular based constitutive model, the pom-pom model; for these flows, and evaluation of the same PE resins in film-casting. As we progress towards molecular systems with defined molecular structural characteristics, we transition from a linear low density polyethylene, LLDPE, based series of PE resins to a high density polyethylene, HDPE, based series of PE resins, each with materials of varying degrees of sparse LCB. Evaluation of the shear step-strain rheology for the series of LLDPE-based PE resins allows for the assessment of any inadequacies associated with the step-strain experiments and the ability of the K-BKZ analog of the pom-pom constitutive model to predict step-strain rheological behavior. Finite rise time and wall slip are addressed to ensure the accuracy of the experimental step-strain measurements and eliminated as factors contributing to the stress relaxation moduli response. Analysis of the K-BKZ analog of the pom-pom constitutive model includes comparisons between experimental stress relaxation moduli and predictions from the model using pom-pom model parameters determined from extensional rheology. The results show inconsistencies in the model predictions, where the predictions fail to capture the short time behavior and accurately dampen at larger strains. Pom-pom model parameters are determined using the K-BKZ analog of the pom-pom constitutive model and fitting the stress relaxation moduli. These results are qualitatively consistent indicating that branching occurs on the longest backbone segments, but the values appear to be unrealistic with respect to the molecular theory. Analysis of film-width reduction or necking during film-casting for the series of LLDPE-based resins determines whether uniaxial extensional rheological characteristics, in particular strain-hardening, that are a result of LCB influence the film-necking properties. At the lowest drawdown ratio necking is observed to be reduced with increasing LCB, and thus strain-hardening characteristics. At the higher drawdown ratios it is observed that LCB no longer reduces necking and the curves merge to the results found for linear PE, except in the case of LDPE, which shows reduced necking at all drawdown ratios. Furthermore, comparisons of film necking are also made to separate the effects of molecular weight distribution, MWD, and LCB. The results indicate that both broadening the MWD and the addition of sparse LCB reduce the degree of necking observed. It is established that film necking is more significantly reduced by LCB than by broadening the MWD. Analysis of the uniaxial extensional and dynamic shear rheology with the pom-pom constitutive model reveals that a distribution of branches along shorter relaxation time modes is important in reducing necking at higher drawdown ratios. Factors such as shear viscosity effects, extrudate swell, and non-isothermal behavior were eliminated as contributing factors because of the similar shear viscosity curves, N1 curves, and activation energies among the sparsely LCB PE resins. The same experimental concepts have been extended to the series of HDPE-based resins, but the lack of adequate uniaxial extensional data prevents a thorough analysis with respect to uniaxial extensional characteristics. Regardless, in the context of step-strain rheology, the results were found to be similar with those of the LLDPE-based series of resins, where a distinctive shape at short times was observed for any of the PE resins possessing some level of LCB that was not apparent in the linear PE resins. Film-casting revealed similar results to those of the LLDPE-based materials as well, but a broader spectrum of drawdown ratios revealed greater insight into how the distribution of branching controls the film-casting response. At low drawdown ratios all materials exhibit the same necking behavior. At intermediate drawdown ratios separation occurs where the linear PE resins experiences the most drastic necking, the sparsely LCB PE resins show reduced necking, and the LDPE shows an even greater reduction in necking. Progression then to the higher drawdown ratios results in similar necking behavior for the linear and sparsely LCB PE resins and greatly reduced necking for the LDPE. These results support the idea that to reduce necking the backbone segments that dominate the film-casting behavior must contain some level of LCB. / Ph. D.
585

Linking Rheological and Processing Behavior to Molecular Structure in Sparsely-Branched Polyethylenes Using Constitutive Relationships

McGrady, Christopher Dwain 13 July 2009 (has links)
This dissertation works towards the larger objective of identifying and assessing the key features of molecular structure that lead to desired polymer processing performance with an ultimate goal of being able to tailor-make specific macromolecules that yield the desired processing response. A series of eight well-characterized, high-density polyethylene (HDPE) resins, with varying degrees of sparse long chain branching (LCB) content, is used to study the effect of both LCB content and distribution on the rheological and commercial processing response using the Pom-pom constitutive relationship. A flow instability known as ductile failure in extensional flow required the development a novel technique known as encapsulation in order to carry out shear-free rheological characterization. Ductile failure prevents the rheological measurement of transient stress growth at higher strains for certain strain-hardening materials. This reduces the accuracy of nonlinear parameters for constitutive equations fit from transient stress growth data, as well as their effectiveness in modeling extensionally driven processes such as film casting. An experimental technique to overcome ductile failure called encapsulation in which the material that undergoes ductile failure is surrounded by a resin that readily deforms homogeneously at higher strains is introduced. A simple parallel model is shown to calculate the viscosity of the core material. The effect of sparse long chain branching, LCB, on the film-casting process is analyzed at various drawdown ratios. A full rheological characterization in both shear and shear-free flows is also presented. At low drawdown ratios, the low-density polyethylenes, LDPE, exhibited the least degree of necking at distances less than the HDPE frostline. The sparsely-branched HDPE resins films had similar final film-widths that were larger than those of the linear HDPE. As the drawdown ratio was increased, film width profiles separated based on branching level. Small amounts of LCB were found to reduce the amount of necking at intermediate drawdown ratios. At higher drawdown ratios, the sparsely-branched HDPE resins of lower LCB had content film-widths that mimicked that of the linear HDPE, while the sparsely-branched HDPE resins of higher LCB content retained a larger film width. Molecular structural analysis via the Pom-pom constitutive model suggested that branching that was distributed across a larger range of backbone lengths serve to improve resistance to necking. As the drawdown ratio increased, the length of the backbones dominating the response decreased, so that the linear chains were controlling the necking behavior of the sparsely-branched resins of lower LCB content while remaining in branched regime for higher LCB content HDPEs. Other processing variables such as shear viscosity magnitude, extrudate swell, and non-isothermal processing conditions were eliminated as contributing factors to the differences in the film width profile. The effect of sparse long chain branching, LCB, on the shear step-strain relaxation modulus is analyzed using a series of eight well-characterized, high-density polyethylene (HDPE) resins. The motivation for this work is in assessing the ability of step-strain flows to provide specific information about a material's branching architecture. Fundamental to this goal is proving the validity of relaxation moduli data at times shorter than the onset of time-strain separability. Strains of 1% to 1250% are imposed on materials with LCB content ranging from zero to 3.33 LCB per 10,000 carbon atoms. All materials are observed to obey time-strain separation beyond some characteristic time, Ï k. The presence of LCB is observed to increase the value of Ï k relative to the linear resin. Furthermore, the amount of LCB content is seen to correlate positively with increasing Ï k. The behavior of the relaxation modulus at times shorter than Ï k is investigated by an analysis of the enhancement seen in the linear relaxation modulus, G0(t), as a function of strain and LCB content. This enhancement is seen to 1) increase with increasing strain in all resins, 2) be significantly larger in the sparsely-branched HDPE resins relative to the linear HDPE resin, and 3) increase in magnitude with increasing LCB content. The shape and smoothness of the damping function is investigated to rule out the presence of wall-slip and material rupture during testing. The finite rise time to impose the desired strain is carefully monitored and compared to the Rouse relaxation time of the linear HDPE resins studied. Sparse LCB is found to increase the magnitude of the relaxation modulus at short times relative to the linear resin. It is shown that these differences are due to variations in the material architecture, specifically LCB content, and not because of mechanical anomalies. / Ph. D.
586

Phase behavior and ordering kinetics of block copolymers in solution during solvent removal

Heinzer, Michael J. 03 October 2011 (has links)
This dissertation is part of an effort to understand and to facilitate the modeling of the ordering kinetics of block copolymers in solution during the extraction of solvent from a solution-cast film. Central to this work was determining a suitable method for measuring the ordering kinetics during solvent removal and being able to interpret the measurements in terms of structure development. It was also necessary to assess a model for quantifying the ordering kinetics to use in conjunction with a mass transfer model to predict structure formation during solvent extraction. Changes in the dynamic mechanical response (DMR) over time of block copolymer solutions at fixed concentrations following solvent removal were explored as a means to track the growth of ordered domains. It was found that DMR measurements performed following solvent extraction were sensitive to the nucleation and growth process of the phase separation process over a wide range of concentrations, beginning near the order-disorder transition concentration. Based on complimentary small angle X-ray measurements, it was determined that the changes in the DMR are caused by the development of individual microstructures, The SAXS experiments also indicated that the DMR is insensitive to late stages of the growth process. Ultimately, DMR measurements under-predicted the ordering times at several concentrations and did not detect ordering at concentrations above which SAXS data indicated ordering was still occurring. The ability to use the parallel and series rules of mixtures for determining ï ¦(t) in conjunction with the Avrami equation to quantitatively model the ordering kinetics was also determined. These models allowed the ordering kinetics during solvent removal to be qualitatively analyzed. However, using the two different rules of mixtures resulted in a wide range of possible ordering times for a given copolymer concentration, making these approximations unsuitable for modeling a real solvent extraction process. Further, the parameters of the model were insensitive to the type of microstructures developing. As a continuation of this work, a new apparatus to track block copolymer ordering in situ during solvent extraction was designed. Experiments using the apparatus allowed the ordering kinetics and domain dimensions as a function of concentration to be monitored in real-time under several solvent removal conditions. These experiments study the ordering kinetics is a manner more akin to real processing conditions and will allow future assessment of the ability of iso-concentration ordering kinetics to predict phase separation during film processing. / Ph. D.
587

Linking the Rheological Behavior to the Processing of Thermotropic Liquid Crystalline Polymers in the Super-cooled State

Qian, Chen 01 June 2016 (has links)
Thermotropic liquid crystalline polymers (TLCPs) have attracted great interest because of the combination of their promising properties, which includes high stiffness and strength, excellent processability, and outstanding chemical resistance. TLCPs exhibit inherently low viscosity relative to many other conventional thermoplastics. The low melt viscosity is detrimental to processes requiring high melt strength, such as extrusion blow molding, film blowing, thermoforming and multilayer coextrusion. Our laboratory has developed a unique method to increase the viscosity of TLCPs by first raising the temperature above the melting point (Tm) to exclude all solid crystalline structure, and then lowering the temperature below Tm to super cool the materials. Additionally, the super-cooling behavior of TLCPs allows them to be blended with other thermoplastics possessing lower processing temperatures. The initial focus of this dissertation is to investigate the processing temperature of a representative TLCP in the super-cooled state, using the methods of small amplitude oscillatory shear (SAOS), the startup of shear flow and differential scanning calorimetry (DSC). The TLCP used in this work is synthesized from 4-hydroxybenzoic acid (HBA), terephthalic acid (TA), hydroquinone (HQ) and hydroquinone derivatives (HQ-derivatives). The TLCP of HBA/TA/HQ/HQ-derivatives has a melting point, Tm, of around 280 oC. Once melted, the TLCP can be cooled 30 oC below the Tm while still maintaining its processability. As the TLCP was cooled to 250 oC, a one order magnitude increase in viscosity was obtained at a shear rate of 0.1 s- 1. Additionally, super cooling the TLCP did not significantly affect the relaxation of shear stress after preshearing. However, the recovery of the transient shear stress in the interrupted shear measurements was suppressed to a great extent in the super-cooled state. The second part of this work is concerned with the extrusion blow molding of polymeric blends containing the TLCP of HBA/TA/HQ/HQ-derivatives and high density polyethylene (HDPE), using a single screw extruder. The blends were processed at a temperature of 260 oC which is 20 oC below Tm of the TLCP such that the thermal degradation of HDPE was minimized. Bottles were successfully produced from the blends containing 10, 20 and 50 wt% TLCP. The TLCP/HDPE blend bottles exhibited an enhanced modulus relative to pure HDPE. However, the improvement in tensile strength was marginal. At 10 and 20 wt% TLCP contents, the TLCP phase existed as platelets, which aligned along the machine direction. A co-continuous morphology was observed for the blend containing 50 wt% TLCP. The preliminary effectiveness of maleic anhydride grafted HDPE (MA-g-HDPE) as a compatibilizer for the TLCP/HDPE system was also studied. The injection molded ternary TLCP/HDPE/MA-g-HDPE blends demonstrated superior mechanical properties over the binary TLCP/HDPE blends, especially in tensile strength. Consequently, it is promising to apply the ternary blends of TLCP/HDPE/MA-g-HDPE in the blow molding process for improved mechanical properties. Finally, this work tends to determine how the isothermal crystallization behavior of a TLCP can be adjusted by blending it with another TLCP of lower melting point. One TLCP (Tm~350 oC) used is a copolyester of HBA/TA/HQ/HQ-derivatives with high HBA content. The other TLCP (Tm~280 oC) is a copolyesteramide of 60 mol% hydroxynaphthoic acid, 20 mol% terephthalic acid and 20 mol% 4-aminophenol. The TLCP/TLCP blends and neat TLCPs were first melted well above their melting points, then cooled to the predetermined temperatures below the melting temperatures at 10 oC/min to monitor the isothermal crystallization. As the content of the low melting TLCP increased in the blends, the temperature at which isothermal crystallization occurred decreased. Comparing with neat TLCPs, the blend of 75% low melting TLCP crystallized at a lower temperature than the pure matrices, and the blend remained as a stable super-cooled fluid in the temperature range from 220 to 280 oC. Under isothermal conditions, differential scanning calorimetry (DSC) was not capable of reliably detecting the the low energy released in the initial stage of crystallization. In contrast, small amplitude oscillatory shear (SAOS) was more sensitive to detecting isothermal crystallization than DSC. / Ph. D.
588

Filler effects in resole adhesive formulations

Wang, Xuyang 20 September 2016 (has links)
This was a university/industry research cooperation with focus on how organic fillers affect the properties of phenol-formaldehyde resole (PF) resins that are formulated for veneer applications like plywood and laminated veneer lumber. The PF formulations studied in this work used fillers that were derived from walnut shell (Juglans regia), alder bark (Alnus rubra), almond shell (Prunus dulcis), and corn cob (furfural production) residue. The chemical composition of all fillers was measured and compared to published data. The basic rheological behavior of the formulations was determined and used to develop an adhesive tack measurement based upon lubrication theory. In this work, the probe-tack test was adapted to a typical stress-controlled rheometer by using the normal force and displacement system to compress the adhesive between parallel plates. By employing a simple power law to describe the complex rheology of adhesives and a lubrication approximation for the viscous force, squeeze flow of adhesives between two flat, impermeable steels and between steel and porous wood can be successfully modeled. However, deviations from theory were encountered as related to the method of adhesive application. Both meniscus force in consequence of the surface tension of adhesive pull around the edge of plate and viscous force due to the viscosity of adhesive operate inside the meniscus when adhesive was spread on the entire surface by a hard roller. manufacture where viscosity and surface tension effects were both involved. Last but not Such is probably the case when wood veneer is cold-pressed (pre-pressed) in plywood least, rheological behavior and alkali modification of wheat flour was determined by rheological and infrared studies, respectively. / Master of Science
589

Using a Sliding Plate Rheometer to Obtain Material Parameters for Simulating Long Fiber Orientation in Injection Molded Composites

Cieslinski, Mark J. 22 September 2015 (has links)
This work is concerned with determining empirical parameters in stress and fiber orientation models required to accurately simulate the fiber orientation in injection molded composites. An independent approach aims to obtain the material parameters using a sliding plate rheometer to measure the rheology of fiber suspensions at increased fiber lengths subjected to transient shear flow. Fiber orientation was measured in conjunction with shear stress to determine the relationship between stress and fiber orientation. Using a compression molding sample preparation procedure, the transient shear stress response was measured for glass and carbon fiber suspensions up to a number average fiber aspect ratio (length/diameter) of 100. Increases in concentration or fiber aspect ratio caused the magnitude of the stress response to increase by as much as an order of magnitude when compared to the suspending matrix. The degree of shear thinning at low shear rates also increased with increases in aspect ratio and concentration. The compression molding sample preparation procedure provided poor control of the initial fiber orientation which led to the investigation of samples subjected to flow reversal and samples generated through injection molding. The samples prepared through injection molding provided improved repeatability in the measured shear stress response and fiber orientation evolution during the startup of flow compared to compression molded samples and samples subjected to flow reversal. From repeatable stress and orientation evolution data, models for stress and fiber orientation were assessed independently. Current theories for stress were unable to reflect the overshoot in the measured stress response and could at best capture the steady state. The transient behavior of the fiber orientation models were found to be highly dependent on the initial fiber orientation. The repeatable orientation data obtained from the injection molding sample preparation procedure provided material parameters in the strain reduction factor and reduced strain closure models. The injection molded samples provided evolution data from different initial fiber orientations to provide further scrutiny or validation of the material parameters. Orientation model parameters that provided reasonable agreement to multiple sets of fiber evolution data in simple shear flow should allow for a better assessment of the orientation models in complex flow simulations. / Ph. D.
590

Organic Fillers in Phenol-Formaldehyde Wood Adhesives

Yang, Xing 10 October 2014 (has links)
Veneer-based structural wood composites are typically manufactured using phenol-formaldehyde resols (PF) that are formulated with wheat flour extender and organic filler. Considering that this technology is several decades old, it is surprising to learn that many aspects of the formulation have not been the subject of detailed analysis and scientific publication. The effort described here is part of a university/industry research cooperation with a focus on how the organic fillers impact the properties of the formulated adhesives and adhesive bond performance. The fillers studied in this work are derived from walnut shell (Juglans regia), alder bark (Alnus rubra), and corn cob (furfural production) residue. Alder bark and walnut shell exhibited chemical compositions that are typical for lignocellulosic materials, whereas corn cob residue was distinctly different owing to the high pressure steam digestion used in its preparation. Also, all fillers had low surface energies with dominant dispersive effects. Surface energy of corn cob residue was a little higher than alder bark and walnut shell, which were very similar. All fillers reduced PF surface tension with effects greatest in alder bark and walnut shell. Surface tension reductions roughly correlated to the chemical compositions of the fillers, and probably resulted from the release of surface active compounds extracted from the fillers in the alkaline PF medium. It was shown that viscoelastic network structures formed within the adhesive formulations as a function of shear history, filler type, and filler particle size. Relative to alder bark and walnut shell, the unique behavior of corn cob residue was discussed with respect to chemical composition. Alder bark and walnut shell exhibited similar effects with a decrease of adhesive activation energy. However, corn cob reside caused much higher adhesive activation energy. Alder bark exhibited significant particle size effects on fracture energy and bondline thickness, but no clear size effects on penetration. Regarding corn cob residue and walnut shell, particle size effects on fracture energy were statistically significant, but magnitude of the difference was rather small. Classified corn cob residue fillers all resulted in a similar bondline thickness (statistically no difference) that was different walnut shell. / Ph. D.

Page generated in 0.0625 seconds