Spelling suggestions: "subject:"[een] SEASONAL COMPONENT"" "subject:"[enn] SEASONAL COMPONENT""
1 |
[en] BROWN S ADAPTIVE CONTROL EXPONENTIAL SMOOTHING METHOD INCLUDING SEASONAL COMPONENT / [pt] INCORPORAÇÃO DA SAZONALIDADE AO MÉTODO DE BROWN COM CONTROLE ADAPTATIVOEUGENIO KAHN EPPRECHT 03 January 2007 (has links)
[pt] Os métodos de Brown e Winters são, sem dúvida alguma, os
métodos de amortecimento exponencial mais usados para a
previsão de séries temporais. Entretanto, ambos podem ser
considerados de aplicação limitada, pois ou não admitem
componente sazonal (Brown) ou utilizam um modelo linear
para a modelagem da tendência (Winters).
Apresenta-se aqui uma generalização dos métodos de
amortecimento na qual as limitações acima são eliminadas.
Em particular, considera-se uma única formulação
matemática para o modelo, composto dos termos de tendência
(constante, linear ou quadrática) e componente sazonal sob
a forma de um conjunto discreto de fatores (aditivos ou
multiaplicativos).
Fornece-se também uma estimativa para a variância dos
erros de previsão, e é proposta uma forma de controle
adaptativo para a constante de amortecimento da parte não
sazonal. Foi feito um programa de computador que
implementa automaticamente o método, inclusive estimando
valores iniciais para o processo. Foram geradas e
processadas algumas séries para exemplo e análise do
desempenho do método. São fornecidas sugestões de pesquisa
futura no sentido de possíveis aprimoramentos para o
método, mas que demandam maior análise. / [en] The methods of Brown and Winters are, undoubtedly, the
most popular exponential smoothing techniques used
nowadays. However, both methods have limitations, such as:
Brown s method is applicable only to non-seasonal series
and Winters use the linear structure as the only possible
model for the trend.
A generalization of the smoothing methods in which the
limitations cited above are eliminated is presented here.
In particular, through a unique analytical formulation,
the trend model (constant, linear or quadratic) is linked
to the seasonal factors (additive or multiplicative). A
forecast error variance estimator is provided and the
adaptive control of the non-seasonal part smoothing
constant is proposed. A computer program was written for
automatic implementation of the method. This program also
performs initial values estimation for the process
initialization. Some series were generated and processed
for testing the method performance. Several suggestions
are given for future research which may yield, upon
further analysis, to method improvement.
|
2 |
Statistická analýza teplotních a srážkových časových řad v České republice v období 1961 - 2008 / Statistical Analysis of Temperature and Precipitation Time Series in the Czech Republic in Period 1961-2008Helman, Karel January 2005 (has links)
The present dissertation deals with an analysis of monthly time series of average temperatures and precipitation sums recorded at 44 sites in the Czech Republic over the period of 1961--2008. The main research purpose is to acquire deeper knowledge of regularities in the climatic time series development, using an appropriate set of statistical methods. A secondary objective is to search and find correlations between the research outcomes and basic geographic coordinates (altitude, longitude and latitude) of particular measurement stations and comparing all the results achieved for the selected climatic elements. There are two major contributions of this work. In the first place, it presents new knowledge in the field of climatic time series, particularly in connection with the strength and development of their seasonal component, further for instance analysing the relation between the distribution of a residual component and the geographic coordinates of the measurement stations. Another contribution lies in an extensive application of statistical methods of climatic time series analysis. Several types of methods were used, having employed both widely and rarely applied statistical tools (linear trends analysis and Box-Jenkins methodology respectively) as well as those used for the very first time (moving-seasonal time series).
|
3 |
[en] FILTER DESIGN FOR THE SEASONAL ADJUSTMENT ROBUST TO VARIATIONS IN THE SEASONAL PATTERNS / [pt] PROJETO DE FILTROS PARA AJUSTE SAZONAL ROBUSTOS A VARIAÇÕES NA SAZONALIDADEMARCELA COHEN MARTELOTTE 20 March 2015 (has links)
[pt] Quando há mudanças no padrão sazonal de uma série temporal, ao longo do tempo, fica caracterizada a presença de sazonalidade móvel. Existem evidências de séries macroeconômicas que apresentam um grau considerável de sazonalidade móvel. Atualmente, para a realização do ajuste sazonal, o programa utilizado pelo IBGE é o X-12-ARIMA, que implementa o método X-11 de ajuste sazonal. O X-11 é um dos métodos mais utilizados no mundo pelos órgãos oficiais de estatística, no entanto, quando existe sazonalidade móvel, ele não consegue tratá-la de forma adequada. Este trabalho propõe dois projetos de filtros de extração da componente sazonal, no domínio da frequência, que são adequados tanto para séries com sazonalidade estável quanto para aquelas que apresentam sazonalidade móvel. O primeiro projeto de filtros, intitulado de filtro sazonal-WLS, utiliza critérios baseados em mínimos quadrados. O desempenho do filtro sazonal-WLS é avaliado com base em sinais sazonais artificiais, para séries mensais e trimestrais, baseados nas características das séries macroeconômicas. Os resultados são comparados com o método X-11 e são identificadas as situações nas quais ele é superior ao X-11. Considerando que o filtro sazonal-WLS é tanto superior ao X-11 quanto maior for a razão entre a variação da sazonalidade e a intensidade da componente irregular, foi desenvolvido o projeto de um segundo filtro. Este novo filtro combina a abordagem de mínimos quadrados ponderados com as características dos filtros de Chebyshev, minimizando simultaneamente o erro na estimativa da sazonalidade e a influência da componente irregular. A ele intitulou-se filtro sazonal-WLS-Chebyshev. Os resultados do filtro sazonal-WLS-Chebyshev são comparados com o filtro sazonal-WLS onde observam-se algumas melhorias. / [en] A time series is said to have moving seasonality when there are changes in the seasonal pattern. There is evidence that macroeconomic series show moving seasonality. Currently, to perform a seasonal adjustment, IBGE uses the program X-12-ARIMA, which implements the seasonal adjustment method X-11. This method is worldwide adopted by official statistical agencies. However, when a time series shows changing seasonal patterns, the X-11 seasonal adjustment method generates unreliable estimates. This thesis proposes two designs of filters to extract seasonal components in the frequency domain, that are suitable for series with stable seasonality and for those with moving seasonality. The first filter, named WLS-seasonal filter, uses criteria based on least squares. The performance of this filter is assessed based on artificial seasonal series for monthly and quarterly data, based on the characteristics of real macroeconomic series. The results are compared with the ones of X-11 method, and the situations in which this filter is superior to X-11 are identified. Taking into account the fact that the performance of the WLS-seasonal filter improves in relation to the one of X-11 the higher the ratio between the variation of seasonality and irregular intensity, the design of a second filter was developed. This new filter combines the approach of weighted least squares with the Chebyshev filters characteristics, simultaneously minimizing the error in estimating the seasonal component and the influence of the irregular component. It was named WLS-Chebyshev-seasonal filter. The performance of this new filter is compared with the one of the WLS-seasonal filter, and some improvements are observed.
|
4 |
[pt] AVALIAÇÃO DOS IMPACTOS DA SAZONALIDADE NA PRECISÃO DE EQUIVALENTES ESTÁTICOS DE REDE VIA FLUXO DE POTÊNCIA PROBABILÍSTICO / [en] EVALUATION OF THE IMPACTS OF SEASONALITY ON THE ACCURACY OF STATIC NETWORK EQUIVALENTS VIA PROBABILISTIC POWER FLOWPATRICIA DUARTE DE FARIA 24 January 2024 (has links)
[pt] A sazonalidade das fontes de geração de energia impacta as etapas de operação e planejamento do setor elétrico, pois provocam, dentre outros, variações de perfil de geração ao longo do ano. Diferentes tipos de usinas, como as hidráulicas, eólicas e térmicas à biomassa, têm sua disponibilidade afetada por causa do regime de chuvas, da intensidade dos ventos ou dos períodos de safra, respectivamente. Nessa dissertação, conduz-se um estudo sobre o impacto da sazonalidade hídrica na precisão de equivalentes de redes, por meio de fluxo de potência probabilístico via simulação Monte Carlo. As redes reduzidas são amplamente empregadas em estudos de planejamento da operação e da expansão do sistema elétrico. Uma das vantagens em sua adoção é a possibilidade de realizar um elevado número de simulações, com menor exigência computacional. A precisão dos equivalentes, nessa dissertação, é quantificada, considerando incertezas na demanda, variação de perfil de geração e a ocorrência de contingências de elementos de transmissão. São avaliados três métodos de redução de redes, em dois ambientes de simulação: cronológico e não cronológico. O primeiro tem o objetivo de analisar o impacto da utilização de um equivalente, obtido a partir da configuração típica de um mês especifico, nos demais meses do ano. O segundo visa comparar as diferentes metodologias de redução de rede diante de variações no ponto de redução, como contingências na transmissão. Os estudos são realizados com os sistemas IEEE 24 barras e IEEE 118 barras. Os equivalentes são elaborados com o software Organon e avaliados em MATLAB. Os resultados das simulações são amplamente discutidos e ressalta-se a importância do uso da rede reduzida adequada para garantia de resultados coerentes. / [en] The seasonality of energy generation sources impacts the operation and planning stages of the electricity sector, as they cause variations in the generation profile throughout the year. Different types of plants, such as hydraulic, wind, and biomass thermal plants, have their availability impacted due to the rainfall regime, the intensity of the winds, or the harvest periods, respectively. In this dissertation, a study is conducted on the impact of hydrological seasonality on the accuracy of network equivalents through probabilistic power flow via Monte Carlo simulation. Reduced networks are widely used in planning studies to operate and expand the electrical system. One of the advantages of its adoption is the possibility of performing a high number of simulations with less computational demand. The precision of the equivalents in this dissertation is quantified, considering the uncertainties in demand, variation of the generation profile, and the occurrence of contingencies of transmission elements. Three network reduction methods are considered in two simulation environments: chronological and non-chronological. The first is to analyze the impact of using an equivalent obtained from the typical configuration of a specific month in the other months of the year. The second aims to compare the different network reduction methodologies in the face of variations in the reduction point, such as transmission contingencies. The studies are carried out with the IEEE 24 bus and IEEE 118 bus systems. The equivalents are created with the Organon software and evaluated in MATLAB. The simulation results are widely discussed, highlighting the importance of using the reduced network to guarantee consistent results.
|
5 |
Statistické metody pro popis provozu restaurace / Statistical Methods for Description of Running a RestaurantNovotná, Lenka January 2010 (has links)
The diploma thesis is written with a view to illustrate application of statistical methods describing progress of economical processes in company. The thesis is divided into two separated parts. First part focuses on theoretical pieces of knowledge about control charts and time series. Second part is composed from chapters that are focused on its practical usage. As simple application for control chart making is enclosed.
|
6 |
Разработка модуля информационной системы предприятия на основе математической модели прогнозирования развития рынка E-COMMERCE по ключевым параметрам : магистерская диссертация / Development of an enterprise information system module based on a mathematical model for predicting the development of the E-COMMERCE market by key parametersНасекина, А. А., Nasekina, A. A. January 2022 (has links)
The dissertation discusses the main methods of sales forecasting for a company with the E-COMMERCE line of business. The optimal model for predicting sales of B2C goods is found, and a method for updating the model using the index of purchasing activity in online stores. A software module developed based on a new mathematical model for forecasting sales for 2022 for the company BOXBERRY SOFT. / В диссертации рассмотрены основные методы прогнозирования продаж для компании с направлением деятельности E-COMMERCE. Найдена оптимальная модель для прогнозирования продаж товара B2C, а также предложен способ модернизации модели с помощью индекса покупательской активности в Интернет-магазинах. Разработан программный модуль на основе новой математической модели для прогноза продаж на 2022 год для компании ООО «БОКСБЕРРИ СОФТ».
|
Page generated in 0.0572 seconds