• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Active microstrip antenna self-detecting oscillator characterisation

Sancheti, Sandeep January 1995 (has links)
No description available.
2

Optical injection phase-lock loops

Bordonalli, Aldario Chrestani January 1996 (has links)
No description available.
3

Design of CMOS integrated frequency synthesizers for ultra-wideband wireless communications systems

Tong, Haitao 15 May 2009 (has links)
Ultra¬wide band (UWB) system is a breakthrough in wireless communication, as it provides data rate one order higher than existing ones. This dissertation focuses on the design of CMOS integrated frequency synthesizer and its building blocks used in UWB system. A mixer¬based frequency synthesizer architecture is proposed to satisfy the agile frequency hopping requirement, which is no more than 9.5 ns, three orders faster than conventional phase¬locked loop (PLL)¬based synthesizers. Harmonic cancela¬tion technique is extended and applied to suppress the undesired harmonic mixing components. Simulation shows that sidebands at 2.4 GHz and 5 GHz are below 36 dBc from carrier. The frequency synthesizer contains a novel quadrature VCO based on the capacitive source degeneration structure. The QVCO tackles the jeopardous ambiguity of the oscillation frequency in conventional QVCOs. Measurement shows that the 5¬GHz CSD¬QVCO in 0.18 µm CMOS technology draws 5.2 mA current from a 1.2 V power supply. Its phase noise is ¬120 dBc at 3 MHz offset. Compared with existing phase shift LC QVCOs, the proposed CSD¬QVCO presents better phase noise and power efficiency. Finally, a novel injection locking frequency divider (ILFD) is presented. Im¬plemented with three stages in 0.18 µm CMOS technology, the ILFD draws 3¬mA current from a 1.8¬V power supply. It achieves multiple large division ratios as 6, 12, and 18 with all locking ranges greater than 1.7 GHz and injection frequency up to 11 GHz. Compared with other published ILFDs, the proposed ILFD achieves the largest division ratio with satisfactory locking range.
4

Enabling low cost test and tuning of difficult-to-measure device specifications: application to DC-DC converters and high speed devices

Wang, Xian 08 June 2015 (has links)
Low-cost test and tuning methods for difficult-to-measure specifications are presented in this research from the following perspectives: 1)"Safe" test and self-tuning for power converters: To avoid the risk of device under test (DUT) damage during conventional load/line regulation measurement on power converter, a "safe" alternate test structure is developed where the power converter (boost/buck converter) is placed in a different mode of operation during alternative test (light switching load) as opposed to standard test (heavy switching load) to prevent damage to the DUT during manufacturing test. Based on the alternative test structure, self-tuning methods for both boost and buck converters are also developed in this thesis. In addition, to make these test structures suitable for on-chip built-in self-test (BIST) application, a special sensing circuit has been designed and implemented. Stability analysis filters and appropriate models are also implemented to predict the DUT’s electrical stability condition during test and to further predict the values of tuning knobs needed for the tuning process. 2) High bandwidth RF signal generation: Up-convertion has been widely used in high frequency RF signal generation but mixer nonlinearity results in signal distortion that is difficult to eliminate with such methods. To address this problem, a framework for low-cost high-fidelity wideband RF signal generation is developed in this thesis. Depending on the band-limited target waveform, the input data for two interleaved DACs (digital-to-analog converters) system is optimized by a matrix-model-based algorithm in such a way that it minimizes the distortion between one of its image replicas in the frequency domain and the target RF waveform within a specified signal bandwidth. The approach is used to demonstrate how interferers with specified frequency characteristics can be synthesized at low cost for interference testing of RF communications systems. The frameworks presented in this thesis have a significant impact in enabling low-cost test and tuning of difficult-to-measure device specifications for power converter and high-speed devices.
5

Návrh generativní kompetitivní neuronové sítě pro generování umělých EKG záznamů / Generative Adversial Network for Artificial ECG Generation

Šagát, Martin January 2020 (has links)
The work deals with the generation of ECG signals using generative adversarial networks (GAN). It examines in detail the basics of artificial neural networks and the principles of their operation. It theoretically describes the use and operation and the most common types of failures of generative adversarial networks. In this work, a general procedure of signal preprocessing suitable for GAN training was derived, which was used to compile a database. In this work, a total of 3 different GAN models were designed and implemented. The results of the models were visually displayed and analyzed in detail. Finally, the work comments on the achieved results and suggests further research direction of methods dealing with the generation of ECG signals.
6

Programming a remote controllable real-time FM audio synthesizer in Rust

Linz, Andreas 27 February 2018 (has links)
Software Audiosynthesizer haben in den letzten 10 Jahren enorm an Popularität gewonnen und sind in vielen Profi- und Heimstudios nicht mehr wegzudenken. Diese Popularität ist durch die hohe Rechenleistung begründet, welche auf PCs und mobilen Geräten überall zur Verfügung steht und Echtzeitaudiosynthese nutzbar macht. Das Ziel dieser Arbeit ist die ausührliche Beschreibung grundlegender Synthesizerkomponenten und die Untersuchung geeigneter Algorithmen und Techniken für deren Realisierung.
7

Design and Analysis of a Low-Power Low-Voltage Quadrature LO Generation Circuit for Wireless Applications

Wang, Shen 25 September 2012 (has links)
The competitive market of wireless communication devices demands low power and low cost RF solutions. A quadrature local oscillator (LO) is an essential building block for most transceivers. As the CMOS technology scales deeper into the nanometer regime, design of a low-power low-voltage quadrature LO still poses a challenge for RF designers. This dissertation investigates a new quadrature LO topology featuring a transformer-based voltage controlled oscillator (VCO) stacked with a divide-by-two for low-power low-voltage wireless applications. The transformer-based VCO core adopts the Armstrong VCO configuration to mitigate the small voltage headroom and the noise coupling. The LO operating conditions, including the start-up condition, the oscillation frequency, the voltage swing and the current consumption are derived based upon a linearized small-signal model. Both linear time-invariant (LTI) and linear time-variant (LTV) models are utilized to analyze the phase noise of the proposed LO. The results indicate that the quality factor of the primary coil and the mutual inductance between the primary and the secondary coils play an important role in the trade-off between power and noise. The guidelines for determining the parameters of a transformer are developed. The proposed LO was fabricated in 65 nm CMOS technology and its die size is about 0.28 mm2. The measurement results show that the LO can work at 1 V supply voltage, and its operation is robust to process and temperature variations. In high linearity mode, the LO consumes about 2.6 mW of power typically, and the measured phase noise is -140.3 dBc/Hz at 10 MHz offset frequency. The LO frequency is tunable from 1.35 GHz to 1.75 GHz through a combination of a varactor and an 8-bit switched capacitor bank. The proposed LO compares favorably to the existing reported LOs in terms of the figure of merit (FoM). More importantly, high start-up gain, low power consumption and low voltage operation are achieved simultaneously in the proposed topology. However, it also leads to higher design complexity. The contributions of this work can be summarized as 1) proposal of a new quadrature LO topology that is suitable for low-power low-voltage wireless applications, 2) an in-depth circuit analysis as well as design method development, 3) implementation of a fully integrated LO in 65 nm CMOS technology for GPS applications, 4) demonstration of high performance for the design through measurement results. The possible future improvements include the transformer optimization and the method of circuit analysis. / Ph. D.
8

Construction of FPGA-based Test Bench for QAM Modulators

Hederström, Josef January 2010 (has links)
In todays fast evolving mobile communications the requirements of higher datarates are continuously increasing, pushing operators to upgrade the backhaul to support these speeds. A cost eective way of doing this is by using microwave links between base stations, but as the requirements of data rates increase, the capacity of the microwave links must be increased. This thesis was part of a funded research project with the objective of developing the next generation high speed microwave links for the E-band. In the research project there was a need for a testing system that was able to generate a series of test signals with selectable QAM modulations and adjustable properties to be able to measure and evaluate hardware within the research project. The developed system was designed in a digital domain using an FPGA platform from Altera, and had the ability of selecting several types of modulations and changing the properties of the output signals as requested. By using simulation in several steps and measurements of the complete system the functionality was verified and the system was delivered to the research project successfully. The developed system can be used to test several dierent modulators in other projects as well and is easily extended to provide further properties.
9

Silicon Photonics and Its Applications in Microwave Photonics

Zhang, Weifeng January 2017 (has links)
Thanks to its compatibility with the current CMOS technology and its potential of seamless integration with electronics, silicon photonics has been attracting an ever-increasing interest in recent years from both the academia and industry. By applying silicon photonic technology in microwave photonics, on-chip integration of microwave photonic systems could be implemented with improved performance including a much smaller size, better stability and lower power consumption. This thesis focuses on developing silicon-based photonic integrated circuits for microwave photonic applications. Two types of silicon-based on-chip devices, waveguide Bragg gratings and optical micro-cavity resonators, are designed, developed, and characterized, and the use of the developed devices in microwave photonic applications is studied. After an introduction to silicon photonics and microwave photonics in Chapter 1 and an overview of microwave photonic signal generation and processing in Chpater2, in Chapter 3 a silicon-based on-chip phase-shifted waveguide Bragg grating (PS-WBG) is designed, fabricated and characterized, and its use for the implementation of a photonic temporal differentiator is experimentally demonstrated. To have a waveguide grating that is wavelength tunable, in Chapter 4 a tunable waveguide grating is proposed by incorporating a PN junction across the waveguide grating, to use the free-carrier plasma dispersion effect in silicon to achieve wavelength tuning. The use of a pair of wavelength-tunable waveguide gratings to form a wavelength-tunable Fabry-Perot resonator for microwave photonic signal processing is studied. Thanks to its electrical tunability, a high-speed electro-optic modulator, a tunable fractional-order photonic temporal differentiator and a tunable optical delay line are experimentally demonstrated. To increase the bandwidth of a waveguide grating, in Chapter 5 a linearly chirped waveguide Bragg grating (LC-WBG) is designed, fabricated and evaluated. By incorporating two LC-WBGs in two arms of a Mach-Zehnder interferometer (MZI) structure, an on-chip optical spectral shaper is produced, which is used in a photonic microwave waveform generation system based on spectral-shaping and wavelength-to-time (SS-WTT) mapping for linearly chirped microwave waveform (LCMW) generation. To enable the LC-WBG to be electrically tuned, in Chapter 6 a lateral PN junction is introduced in the grating and thus an electrically tunable LC-WBG is realized. By incorporating two tunable LC-WBGs in a Michelson interferometer structure, an electrically tunable optical spectral shaper is made. By applying the fabricated spectral shaper in an SS-WTT mapping system, a continuously tunable LCMW is experimentally generated. Compared with a waveguide Bragg grating device, an on-chip optical micro-cavity resonator usually has a much smaller dimension, which is of help to increase the integration density and reduce the power consumption. Different on-chip optical micro-cavity resonators are studied in this thesis. In Chapter 7, an on-chip symmetric MZI incorporating multiple cascaded microring resonators is proposed. By controlling the radii of the rings, the MZI could be designed to have a spectral response with a linearly-varying free spectral range (FSR), which could be used in photonic generation of an LCMW, and to have a multi-channel spectral response with identical channel spacing, which could be used in the implementation of an independently tunable multi-channel fractional-order temporal differentiator. To further reduce the footprint of an optical micro-cavity resonator, in Chapter 8 an ultra-compact microdisk resonator (MDR) with a single-mode operation and an ultra-high Q-factor is proposed, fabricated and evaluated, and its use for the implementation of a microwave photonic filter and an optical delay line is experimentally demonstrated. To enable the MDR to be electrically tunable, in Chapter 9 an electrically tunable MDR is realized by incorporating a lateral PN junction in the disk. The use of the fabricated MDR in microwave photonic applications such as a high-speed electro-optic modulator, a tunable photonic temporal differentiator and a tunable optical delay line is experimentally demonstrated.
10

Softwarový generátor EKG signálu / Software ECG generator

Hendrych, Marek January 2010 (has links)
The diploma thesis deals the cretion of the ECG signal and its potential morphology. A signal is generated using a program that is created in MATLAB. On the basis of these methods of describing the signal, was chosen method, based on the similarity of ECG with sinus respectively. triangular pattern. Generated by the program can draw the ECG signal by assignment of pulse rate, lenght of the signal, sampling rate and modifications of the waves and oscillations. One or more predefined noise can be added to the signal. Generated signal is possible to save to the format that supports program MATLAB.

Page generated in 0.0469 seconds