• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Random Matrix Theory for Stochastic and Quantum Many-Body Systems

Nakerst, Goran 20 September 2024 (has links)
Random matrix theory (RMT) is a mathematical framework that has found profound applications in physics, particularly in the study of many-body systems. Its success lies in its ability to predict universal statistical properties of complex systems, independent of the specific details. This thesis explores the application of RMT to two classes of many-body systems: quantum and stochastic many-body systems. Within the quantum framework, this work focuses on the Bose-Hubbard system, which is paradigmatic for modeling ultracold atoms in optical traps. According to RMT and the Eigenstate Thermalization Hypothesis (ETH), eigenstate-to-eigenstate fluctuations of expectation values of local observables decay rapidly with the system size in the thermodynamic limit at sufficiently large temperatures. Here, we study these fluctuations in the classical limit of fixed lattice size and increasing boson number. We find that the fluctuations follow the RMT prediction for large system sizes but deviate substantially for small lattices. Partly motivated by these results, the Bose-Hubbard model on three sites is studied in more detail. On few sites, the Bose-Hubbard model is known to be a mixed system, being neither fully chaotic nor integrable. We compare energy-resolved classical and quantum measures of chaos, which show a strong agreement. Deviations from RMT predictions are attributed to the mixed nature of the few-site model. In the context of stochastic systems, generators of Markov processes are studied. The focus is on the spectrum. We present results from two investigations of Markov spectra. First, we investigate the effect of sparsity on the spectrum of random generators. Dense random matrices previously used as a model for generic generators led to very large spectral gaps and therefore to unphysically short relaxation times. In this work, a model of random generators with adjustable sparsity — number of zero matrix elements — is presented, extending the dense framework. It is shown that sparsity leads to longer, more physically realistic relaxation times. Second, the generator spectrum of the Asymmetric Simple Exclusion Process (ASEP), a quintessential model in non-equilibrium statistical mechanics, is analyzed. We investigate the spectral boundary, which is characterized by pronounced spikes. The emergence of these spikes is analyzed from several points of view, including RMT. The results presented in this thesis contribute to the understanding of the applicability of RMT to many-body systems. This thesis highlights successes such as the explanation of “ETH fluctuations” in Bose-Hubbard models, the improvement of random matrix descriptions by introducing sparsity, and the emergence of spikes in the spectral boundary of the ASEP. The latter is a notable case where RMT provides insights even though the ASEP is a Bethe-integrable system. Furthermore, this thesis shows examples of the limits of RMT, exemplified by the results presented for the Bose-Hubbard model with a few sites.
2

Um modelo de exclusão assimétrico para o transporte de partículas mediado por motores moleculares / Asymetric exclusion model for intracellular transport driven by molecular motors

Sena, Elisa Thomé 25 March 2008 (has links)
Motores moleculares são proteínas capazes de transportar objetos tais como vesículas, organelas e macromoléculas ao longo do citoesqueleto. Tratam-se de dispositivos bastante interessantes do ponto de vista físico, pois produzem trabalho em um ambiente extremamente ruidoso. Recentemente, diversos experimentos realizados in vivo têm revelado que objetos transportados por motores moleculares ao longo dos microtúbulos apresentam movimento bidirecional. Embora o movimento unidirecional dos motores envolvidos no transporte destes objetos seja bem caracterizado tanto experimentalmente quanto teoricamente, o movimento bidirecional das partículas transportadas pelos motores ainda não é bem entendido. Contudo, acredita-se que este fenômeno seja causado pela cooperatividade dos motores moleculares. Existem na literatura diversos trabalhos que visam descrever o comportamento coletivo de partículas locomovendo-se sobre uma rede unidimensional com interações de volume excluído e taxas de transição assimétricas. Estes modelos são conhecidos como TASEP (Totally asymmetric simple exclusion processes ) ou ASEP (Asymmetric simple exclusion processes ) e fazem parte de uma classe de modelos denominados sistemas difusivos dirigidos_. Embora alguns autores tenham utilizado modelos do tipo ASEP e TASEP para descrever o movimento dos motores moleculares exclusivamente [37], [38], não há ainda nesta visão microscópica, extensões deste modelo para incorporar as partículas cuja dinâmica depende exclusivamente da presença de motores. No presente trabalho propomos um modelo de exclusão, desenvolvido com o intuito de descrever o movimento conjunto de motores moleculares e das partículas carregadas pelos mesmos, as quais por simplicidade denominamos vesículas. Neste modelo, as vesículas não possuem dinâmica própria, ou seja, dependem da interação com os motores moleculares para se movimentarem. Procuramos soluções analíticas para este modelo para o 1 RESUMO 2 caso em que há apenas uma vesícula locomovendo-se sobre a rede. Utilizando o método das matrizes [32], calculamos a velocidade média da vesícula no estado estacionário e analisamos seu comportamento em situações de interesse. / Molecular motors are proteins that transport objects such as vesicles, organelles and macromolecules along the cytoskeletum of cells. For physics, they are very interesting devices because they are able to generate work in an extremely viscous environment. Recently, many in vivo experiments have revealed that objects transported by molecular motors move bidirectionally along microtubules. Although the unidirectional movement of such molecular motors is experimentally and theoretically well characterized, the movement of particles transported by these motors is not well understood yet. However, this fenomenum is believed to be caused by the cooperativity of molecular motors. A great number of works are found in literature, which were formulated to describe the collective behaviour of many particles moving in a one-dimensional lattice with a preferred hop rate and exclusion. These models are known as TASEP (Totally asymmetric simple exclusion processes) or ASEP (Asymmetric simple exclusion processes) and are part of a class of models named _driven di_usive systems_. Although some authors made use of ASEP and TASEP models to describe the movement of molecular motors [37], [38], there is not yet, in this microscopic point of view, extensions of these models capable of incorporate particles which the dynamics depends exclusivaly from the presence of motors. In this work we propose a exclusion model developed to describe the joint movement of molecular motors and particles, generally called vesicles. In this model, vesicles do not have a proper dynamics, that is, they on the interaction with molecular motors to move. We look after analytical solutions of this model when there is only one vesicle moving on the lattice. We use a matrix formulation [32] to obtain the mean velocity of the vesicle and analyse its behaviour in situations of interest.
3

Um modelo de exclusão assimétrico para o transporte de partículas mediado por motores moleculares / Asymetric exclusion model for intracellular transport driven by molecular motors

Elisa Thomé Sena 25 March 2008 (has links)
Motores moleculares são proteínas capazes de transportar objetos tais como vesículas, organelas e macromoléculas ao longo do citoesqueleto. Tratam-se de dispositivos bastante interessantes do ponto de vista físico, pois produzem trabalho em um ambiente extremamente ruidoso. Recentemente, diversos experimentos realizados in vivo têm revelado que objetos transportados por motores moleculares ao longo dos microtúbulos apresentam movimento bidirecional. Embora o movimento unidirecional dos motores envolvidos no transporte destes objetos seja bem caracterizado tanto experimentalmente quanto teoricamente, o movimento bidirecional das partículas transportadas pelos motores ainda não é bem entendido. Contudo, acredita-se que este fenômeno seja causado pela cooperatividade dos motores moleculares. Existem na literatura diversos trabalhos que visam descrever o comportamento coletivo de partículas locomovendo-se sobre uma rede unidimensional com interações de volume excluído e taxas de transição assimétricas. Estes modelos são conhecidos como TASEP (Totally asymmetric simple exclusion processes ) ou ASEP (Asymmetric simple exclusion processes ) e fazem parte de uma classe de modelos denominados sistemas difusivos dirigidos_. Embora alguns autores tenham utilizado modelos do tipo ASEP e TASEP para descrever o movimento dos motores moleculares exclusivamente [37], [38], não há ainda nesta visão microscópica, extensões deste modelo para incorporar as partículas cuja dinâmica depende exclusivamente da presença de motores. No presente trabalho propomos um modelo de exclusão, desenvolvido com o intuito de descrever o movimento conjunto de motores moleculares e das partículas carregadas pelos mesmos, as quais por simplicidade denominamos vesículas. Neste modelo, as vesículas não possuem dinâmica própria, ou seja, dependem da interação com os motores moleculares para se movimentarem. Procuramos soluções analíticas para este modelo para o 1 RESUMO 2 caso em que há apenas uma vesícula locomovendo-se sobre a rede. Utilizando o método das matrizes [32], calculamos a velocidade média da vesícula no estado estacionário e analisamos seu comportamento em situações de interesse. / Molecular motors are proteins that transport objects such as vesicles, organelles and macromolecules along the cytoskeletum of cells. For physics, they are very interesting devices because they are able to generate work in an extremely viscous environment. Recently, many in vivo experiments have revealed that objects transported by molecular motors move bidirectionally along microtubules. Although the unidirectional movement of such molecular motors is experimentally and theoretically well characterized, the movement of particles transported by these motors is not well understood yet. However, this fenomenum is believed to be caused by the cooperativity of molecular motors. A great number of works are found in literature, which were formulated to describe the collective behaviour of many particles moving in a one-dimensional lattice with a preferred hop rate and exclusion. These models are known as TASEP (Totally asymmetric simple exclusion processes) or ASEP (Asymmetric simple exclusion processes) and are part of a class of models named _driven di_usive systems_. Although some authors made use of ASEP and TASEP models to describe the movement of molecular motors [37], [38], there is not yet, in this microscopic point of view, extensions of these models capable of incorporate particles which the dynamics depends exclusivaly from the presence of motors. In this work we propose a exclusion model developed to describe the joint movement of molecular motors and particles, generally called vesicles. In this model, vesicles do not have a proper dynamics, that is, they on the interaction with molecular motors to move. We look after analytical solutions of this model when there is only one vesicle moving on the lattice. We use a matrix formulation [32] to obtain the mean velocity of the vesicle and analyse its behaviour in situations of interest.
4

[en] MIXING TIMES FOR RANDOM WALKS ON THE SYMMETRIC GROUP / [pt] TEMPOS DE MISTURA PARA PASSEIOS ALEATÓRIOS NO GRUPO SIMÉTRICO

RODRIGO MARINHO DE SOUZA 28 February 2018 (has links)
[pt] O objetivo desta dissertação é apresentar algumas técnicas e ferramentas para a obtenção de cotas superiores e inferiores para tempos de mistura de cadeias de Markov. Para que isso se torne mais interessante, apresentaremos estes conceitos através de cadeias de Markov que atuam sobre o grupo simétrico, que podem ser vistas como embaralhamentos de cartas. Ademais, usaremos um destes embaralhamentos como toy model para o processo de exclusão simples simétrico, o que nos ajudará a determinar os tempos de mistura do embaralhamento e do famoso sistema de partículas. / [en] The aim of this dissertation is to introduce some techniques and tools to obtain upper and lower bounds for Markov chains mixing times. To make it more interesting, we introduce these concepts through Markov chains that act on the symmetric group, which can be seen as card shuffles. Furthermore, we use one of these shuffles as a toy model for the symmetric simple exclusion process, which helps us to determine mixing times for the shuffle and for the famous particle system.

Page generated in 0.0561 seconds