Spelling suggestions: "subject:"[een] SLUDGE"" "subject:"[enn] SLUDGE""
311 |
Barley Grain Grown with Dried Sewage SludgeDay, Arden, Thompson, Rex, Swingle, Spencer 09 1900 (has links)
A four-year experiment, conducted at the Mesa Agricultural Center, studied the use of dried sewage sludge from the City of Phoenix as a source of plant nutrients in the commercial production of barley grain. The objective was to compare the effects of sewage sludge and commercial fertilizer on barley growth, grain yield, and quality. Three fertilizer treatments were used: (1) suggested rates of nitrogen (N), phosphorus (P), and potassium (K) in Arizona; (2) dried sewage sludge to supply plant-available N in amounts equal to the suggested rate; and (3) N, P, and K from inorganic fertilizers, in amounts equal to those in sewage sludge. Characteristics of barley growth, grain yield, and quality were similar for the three fertilizer treatments. Barley can use the fertilizer nutrients in dried sewage sludge to produce grain as effectively as it can utilize the fertilizer nutrients in inorganic fertilizer.
|
312 |
Response of Barley and Wheat to Sewage Sludge Loading RatesDay, Arden, Solomon, Mengste, Taylor, Brooks, Pepper, Ian, Minnich, Martha 09 1900 (has links)
A greenhouse experiment was conducted to evaluate the responses of barley and wheat to sewage sludge loading rates of 150 to 750 lb /acre plant-available N and to recommended inorganic N (150 lb/ acre). All sewage sludge rates delayed maturity in both barley and wheat. Sludge loading rates up to 450 lb /acre of plant-available N increased vegetative growth and grain yield in both crops. Sludge rates higher than 450 lb/acre of plant-available N resulted in a reduction in the number of plants per pot; however, the stand reduction was greater for wheat than for barley.
|
313 |
Effects of Sewage Sludge on Wheat Forage ProductionDay, Arden, Swingle, Spencer, Taylor, Brooks, Pepper, Ian, Minnich, Martha 09 1900 (has links)
Experiments were conducted in Avra Valley, Arizona, to study the use of digested liquid sewage sludge as a source of plant nutrients in the commercial production of green-chopped feed and hay from wheat. Wheat grown with the recommended amount of plant-available nitrogen from sewage sludge produced more green-chopped feed and hay than did wheat grown with the same amount of nitrogen from inorganic fertilizer. Wheat green-chopped feed and hay grown with sewage sludge and inorganic fertilizer had similar livestock feeding qualities. Fertilizing wheat with sewage sludge delayed maturity.
|
314 |
Effects of Sewage Sludge on the Yield and Quality of Wheat Grain and StrawDay, Arden, Swingle, Spencer, Taylor, Brooks, Pepper, Ian, Minnich, Martha 09 1900 (has links)
Experiments were conducted in Avra Valley, Arizona, to study the use of digested liquid sewage sludge as a source of plant nutrients in the commercial production of grain and straw from wheat. Wheat grown with the recommended amount of plant -available nitrogen from sewage sludge produced the same grain yield as wheat grown with the same amount of nitrogen from inorganic fertilizer. Wheat grain and straw grown with sewage sludge and inorganic fertilizer had similar livestock feeding qualities. Fertilizing wheat with sewage sludge delayed maturity.
|
315 |
Impacto do lançamento de lodo de tanques/fossas sépticas em estação de tratamento de esgoto com reator anaeróbio de fluxo ascendente e manta de lodo (UASB) / Impact of sludge disposal of septic tanks on wastewater treatment plant with upflow anaerobic sludge blanket (UASB)Gonçalves, Camila do Prado 31 October 2008 (has links)
Neste trabalho avaliou-se o desempenho de um reator anaeróbio de fluxo ascendente e manta de lodo (UASB) no tratamento combinado de esgoto sanitário com o lançamento de lodo proveniente de tanques sépticos. O estudo foi desenvolvido em escala plena na Estação de Tratamento de Esgoto (ETE) do Campus I da Universidade de São Paulo (USP) em São Carlos-SP. Foram utilizados dois reatores UASB com 18,8 m³ cada, um reator (UASB I) com função de controle e o outro reator (UASB II) no qual foi descarregado o lodo séptico. A pesquisa foi dividida em duas etapas: a primeira compreendeu o início de operação e o monitoramento dos reatores e, da segunda fez parte os ensaios de lançamento de lodo séptico no sistema. A partida foi efetuada sem utilização de inóculo e os reatores foram operados com tempo de detenção hidráulica médio (TDH) de 8 h, vazão afluente média de 2,35 m³/h e velocidade ascensional de 0,6 m/h. Em seis meses de operação os reatores apresentaram eficiências médias de remoção de DQO nos reatores UASB I e UASB II iguais a 49% e 65%. Quanto à remoção de sólidos os reatores UASB I e UASB II atingiram remoção de 36% e 37% para ST e de 67% e 63% para SST, respectivamente. Após esse período, deu-se início ao estudo que avaliou o impacto do lançamento de lodo séptico no UASB II. Foram realizados três ensaios com diferentes volumes de lodo (1; 3 e 5 m³) descarregados na forma de pulso com vazão média de 5,24 m³/h. Os lodos sépticos utilizados na pesquisa foram coletados por caminhões limpa-fossa e descarregados em um reservatório (15 m³) na ETE para posterior lançamento no reator UASB II. Foram feitas as caracterizações das amostras dos lodos sépticos (coletadas no ato da descarga em cada ensaio), com as quais pôde-se constatar a heterogeneidade da composição desse tipo de resíduo e sua viabilidade de pós-tratamento anaeróbio. Nos ensaios foram realizados monitoramentos temporais logo após a descarga de lodo para acompanhamento da resposta ao pulso de carga imposto. No geral, o reator UASB apresentou capacidade de degradar aproximadamente 2/3 da carga orgânica lançada com o lodo séptico. Os resultados são um indicativo de que a disposição de lodo sépticos em reatores UASB, quando bem programada, é uma solução viável e de grande importância para o tratamento dos resíduos provenientes de tanques/fossas sépticas. / The performance of upflow anaerobic sludge blanket (UASB) in the sanitary wastewater combined treatment with sludge disposal of septic tanks was evaluated in this work. The study was carried out (full scale) in the Wastewater Treatment Plant (WTP) located in campus I of the University of Sao Paulo (USP), city of Sao Carlos, State of Sao Paulo, Brazil. Two UASB reactors were used; volume of each reactor ~ 18,8 m³. UASB I was the control reactor, and UASB II was the reactor in which the septic sludge was disposed. The research was divided in two steps: the first one, which has taken into account the beginning of reactors operation and, the second one, in which occurred the disposal of septic sludge in the reactors. The start-up was carried out without utilization of inoculums. Reactors were operated with an average hydraulic retention time of 8 hours, average influent flow rate of 2.35 m³/h, and upflow velocity of 0.6 m/h. In six months, reactors presented average removal efficiencies of COD in UASB I and UASB II of 48% and 65%, respectively. Concerning to the solid removal, UASB I and UASB II have achieved removal of 36% and 37% for TS, and 67% and 63% for TSS, respectively. After this period of time, the evaluation of disposal impact of septic sludge was started in UASB II. Three essays with different sludge volume (1, 3, and 5 m³) were carried out; sludge volume was disposed in a pulse way with average flow rate of 5.24 m³/h. Septic sludge utilized in the research was collected by clean septic tank trucks, and disposed in a reservoir (volume of 15 m³) in WTP, in order to allow further disposal in the UASB II. By the hand of characterization of septic sludge samples (collected when disposal was carried out), it was possible to verify the heterogeneity about composition of this kind of waste and its availability in terms of anaerobic post-treatment. Temporal monitoring after the sludge disposal was carried out in order to allow the accompaniment of results provided by the pulse. In general, UASB reactor presented capacity in terms of degradation of approximately 2/3 of the organic load disposed with septic sludge. The results are a good indicative that the disposal of septic sludge in UASB reactors is a viable solution, and it is very important for the treatment of wastes from septic tanks.
|
316 |
Molecular characterization of filamentous bacteria isolated from full-scale activated sludge processesMarrengane, Zinhle January 2007 (has links)
Thesis (M.Tech.: Biotechnology)-Dept. of Biotechnolgy, Durban University of Technology, 2007
xviii, 143 leaves / Activated sludge flocs are responsible for flocculation, settling and dewaterability. It is important to maintain the growth off loc-forming bacteria for efficient sludge settleability and compaction for good quality effluent. Filamentous bacteria on the other hand are believed to provide rigid support network or backbone upon which floc-forming bacteria adhere to form stable activated sludge flocs (Wilderer et al., 2002; Ramothokang et al., 2003).
Filamentous bacteria can also be detrimental to the process when they outgrow floc-forming bacteria. Morphologically filamentous bacteria are at an advantage as they have
higher outward growth velocity and can extend freely to bulk liquid substrate.
Proliferation of filamentous bacteria causes foaming and bulking (Martins et al., 2004).
Although chemical alleviation measures to circumvent bulking are present, they are
symptomatic (Chang et al., 2004).
Eikelboom (1975) developed the first identification keys for the classification of
filamentous bacteria that is primarily based on morphological characteristics and
microscopic examination. Although very useful, this type of identification has its
limitations. For instance some filamentous bacteria can change morphology in response
to changes in the environment and although some of them can be morphologically similar
they may vary considerably in their physiology and taxonomy (Martins et al., 2004).
A vast number of filamentous bacteria are still very poorly understood which could be
due to the problems of cultivation due to their slow growing nature and maintenance of
cultures (Rossetti et al., 2006). This limitation necessitates a molecular approach to resolve the taxonomy of filamentous bacteria as it is a culture-independent technique which is highly accurate.
This project was undertaken to verify the identity of pure cultures of filamentous bacteria isolated previously through the application of molecular techniques. The 16S rDNA are conserved regions in bacterial cells and they can be extracted and specific nucleic acid fragments amplified. Denaturation gradient gel electrophoresis enabled the separation of fragments of identical length but different size and served as an indication of purity (Muyzer et al., 1993).
|
317 |
Impacto do lançamento de lodo de tanques/fossas sépticas em estação de tratamento de esgoto com reator anaeróbio de fluxo ascendente e manta de lodo (UASB) / Impact of sludge disposal of septic tanks on wastewater treatment plant with upflow anaerobic sludge blanket (UASB)Camila do Prado Gonçalves 31 October 2008 (has links)
Neste trabalho avaliou-se o desempenho de um reator anaeróbio de fluxo ascendente e manta de lodo (UASB) no tratamento combinado de esgoto sanitário com o lançamento de lodo proveniente de tanques sépticos. O estudo foi desenvolvido em escala plena na Estação de Tratamento de Esgoto (ETE) do Campus I da Universidade de São Paulo (USP) em São Carlos-SP. Foram utilizados dois reatores UASB com 18,8 m³ cada, um reator (UASB I) com função de controle e o outro reator (UASB II) no qual foi descarregado o lodo séptico. A pesquisa foi dividida em duas etapas: a primeira compreendeu o início de operação e o monitoramento dos reatores e, da segunda fez parte os ensaios de lançamento de lodo séptico no sistema. A partida foi efetuada sem utilização de inóculo e os reatores foram operados com tempo de detenção hidráulica médio (TDH) de 8 h, vazão afluente média de 2,35 m³/h e velocidade ascensional de 0,6 m/h. Em seis meses de operação os reatores apresentaram eficiências médias de remoção de DQO nos reatores UASB I e UASB II iguais a 49% e 65%. Quanto à remoção de sólidos os reatores UASB I e UASB II atingiram remoção de 36% e 37% para ST e de 67% e 63% para SST, respectivamente. Após esse período, deu-se início ao estudo que avaliou o impacto do lançamento de lodo séptico no UASB II. Foram realizados três ensaios com diferentes volumes de lodo (1; 3 e 5 m³) descarregados na forma de pulso com vazão média de 5,24 m³/h. Os lodos sépticos utilizados na pesquisa foram coletados por caminhões limpa-fossa e descarregados em um reservatório (15 m³) na ETE para posterior lançamento no reator UASB II. Foram feitas as caracterizações das amostras dos lodos sépticos (coletadas no ato da descarga em cada ensaio), com as quais pôde-se constatar a heterogeneidade da composição desse tipo de resíduo e sua viabilidade de pós-tratamento anaeróbio. Nos ensaios foram realizados monitoramentos temporais logo após a descarga de lodo para acompanhamento da resposta ao pulso de carga imposto. No geral, o reator UASB apresentou capacidade de degradar aproximadamente 2/3 da carga orgânica lançada com o lodo séptico. Os resultados são um indicativo de que a disposição de lodo sépticos em reatores UASB, quando bem programada, é uma solução viável e de grande importância para o tratamento dos resíduos provenientes de tanques/fossas sépticas. / The performance of upflow anaerobic sludge blanket (UASB) in the sanitary wastewater combined treatment with sludge disposal of septic tanks was evaluated in this work. The study was carried out (full scale) in the Wastewater Treatment Plant (WTP) located in campus I of the University of Sao Paulo (USP), city of Sao Carlos, State of Sao Paulo, Brazil. Two UASB reactors were used; volume of each reactor ~ 18,8 m³. UASB I was the control reactor, and UASB II was the reactor in which the septic sludge was disposed. The research was divided in two steps: the first one, which has taken into account the beginning of reactors operation and, the second one, in which occurred the disposal of septic sludge in the reactors. The start-up was carried out without utilization of inoculums. Reactors were operated with an average hydraulic retention time of 8 hours, average influent flow rate of 2.35 m³/h, and upflow velocity of 0.6 m/h. In six months, reactors presented average removal efficiencies of COD in UASB I and UASB II of 48% and 65%, respectively. Concerning to the solid removal, UASB I and UASB II have achieved removal of 36% and 37% for TS, and 67% and 63% for TSS, respectively. After this period of time, the evaluation of disposal impact of septic sludge was started in UASB II. Three essays with different sludge volume (1, 3, and 5 m³) were carried out; sludge volume was disposed in a pulse way with average flow rate of 5.24 m³/h. Septic sludge utilized in the research was collected by clean septic tank trucks, and disposed in a reservoir (volume of 15 m³) in WTP, in order to allow further disposal in the UASB II. By the hand of characterization of septic sludge samples (collected when disposal was carried out), it was possible to verify the heterogeneity about composition of this kind of waste and its availability in terms of anaerobic post-treatment. Temporal monitoring after the sludge disposal was carried out in order to allow the accompaniment of results provided by the pulse. In general, UASB reactor presented capacity in terms of degradation of approximately 2/3 of the organic load disposed with septic sludge. The results are a good indicative that the disposal of septic sludge in UASB reactors is a viable solution, and it is very important for the treatment of wastes from septic tanks.
|
318 |
PERSPECTIVE METHODS OF SEWAGE SLUDGE UTILISATION FOR ENERGY PRODUCTION / PERSPECTIVE METHODS OF SEWAGE SLUDGE UTILISATION FOR ENERGY PRODUCTIONElsässer, Thomas January 2011 (has links)
Tato práce o energetickém využití čistírenských kalů obsahuje popis vlastností kalu (hustota, měrná tepelná kapacita a dynamická viskozita). Stěžejní kapitoly jsou věnovány desintegraci kalu pro zvýšení obsahu sušiny po odvodnění a experimentálnímu zkoumání tvorby emisí při spalování kalu, kde byl posuzován vliv přídavku alkálie. Spalování vysušeného kalu proběhlo ve fluidní vrstvě, byla zkoumána produkce škodlivin a distribuce těžkých kovů. Druhá ucelená část práce je věnována termochemické desintegraci stabilizovaného kalu, přičemž byl experimentálně vyhodnocován vliv na obsah vody v odvodněném kalu. Provedené experimenty sloužily k detekci vhodné teploty a dávky chemikálie. Výsledky experimentů byly rovněž podkladem pro ekonomickou bilanci, která je založena na úsporách za likvidaci menšího množství kalu.
|
319 |
Effectiveness of Biochar Addition in Reducing Concentrations of Selected Nutrients and Bacteria in RunoffWilliams, Rachel 01 January 2016 (has links)
Land application and storage of horse manure and municipal sludge can increase nutrient and bacteria concentrations in runoff. Biochar increases soil nutrient retention when used as a soil amendment. The objectives of this study were to determine if biochar, when mixed with horse manure or sludge, affects runoff concentrations of total Kjehldahl nitrogen (TKN), ammonia-nitrogen (NH3-N), nitrate (NO3-N), total phosphorus (TP), dissolved phosphorus (DP), total suspended solids (TSS), chemical oxygen demand (COD), and fecal coliforms (FC). Horse manure and sludge were applied to 2.4 x 6.1 m fescue plots (six each), with three plots of each material amended with 5-8% biochar w/w. Simulated rainfall (101.6 mm/h) was applied to the 12 treatment plots and three control plots. The first 0.5 h of runoff was collected and analyzed for the above-listed parameters. The data were analyzed using an ANCOVA, with SCS runoff curve number (CN) used as the covariate. In general, CN was directly correlated to runoff concentrations of parameters. Plots with low CN values displayed no treatment differences for any measured parameter. Biochar reduced runoff concentrations of TKN and NH3-N for municipal sludge treatments, and TKN, NH3-N, TP, TSS, and FC for horse manure treatments.
|
320 |
Bioconversion of paper mill lignocellulosic materials to lactic acid using cellulase enzyme complex and microbial culturesMukhopadhyay, Achira January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Praveen V. Vadlani / Paper mill sludge is a solid waste generated from the paper-making industry. Cellulose in the sludge can be hydrolyzed into glucose using a cellulase enzyme complex, which can then be fermented to produce value added chemicals, such as lactic acid. The enzyme requirement for hydrolysis of the cellulose in paper sludge was benchmarked against paper pulp. Enzymatic requirements for complete conversion of cellulose in paper pulp was found to be 12 fpu cellulase, supplemented with 5 egu of beta-glucosidase per gram of cellulose. However, beta-glucosidase supplementation had to be increased to 38 egu to obtain a similar level of hydrolysis in the case of paper sludge indicating a decrease in enzyme activity due to sludge components.
Response Surface Methodology (RSM) was used to study the lactic acid yield from paper sludge using enzyme dosage and temperature as parameters and operating in simultaneous saccharification and fermentation (SSF) mode. Maximum lactic acid yield of 0.75 g/g glucose was obtained within 36 hours using 10 fpu cellulase supplemented with 32 egu beta-glucosidase at a temperature of 39 degree C. Using the optimization function of the software, the optimal operational conditions for paper sludge hydrolysis were found to be 9 fpu cellulase, 12.5 egu beta-glucosidase at 40 degree C which resulted in a lactic acid yield of 0.58 g /g glucose.
Lactic acid producing microbial cultures, Lactobacillus plantarum and Rhizopus oryzae were evaluated for fermentation of the pulp and sludge hydrolyzate at 125-ml shake flask and 2-L fermenter levels. In paper pulp media, the yields obtained by bacterial and fungal fermentations were 0.89 and 0.36 g/g glucose, respectively. In the case of paper sludge, the yield remained same, but
inhibition of bacterial growth occurred. This resulted in lower substrate uptake and productivity than those obtained in paper pulp. On the other hand, fungal growth rate was enhanced due to the high solids content of paper sludge. The yield of lactic acid from paper sludge using L. plantarum and R. oryzae was 0.88 and 0.72 g/g glucose, respectively. Microbial cultures native to the sludge were isolated and evaluated for their performance of lactic acid production.
|
Page generated in 0.0597 seconds