• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 604
  • 591
  • 68
  • 61
  • 59
  • 46
  • 19
  • 15
  • 14
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1727
  • 814
  • 458
  • 451
  • 389
  • 250
  • 241
  • 236
  • 215
  • 197
  • 196
  • 196
  • 185
  • 177
  • 174
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Extrahering av mikroplaster ur avloppsslam : en jämförande studie / Extraction of microplastics from sewage sludge : a comparative study

Weman, Karolin January 2023 (has links)
Dagens intensiva användning av plast genererar mikroplaster som på olika sätt sprids ut i vår omgivning och medför risker för naturliga system världen över. Dessa mikroplaster härrör från bland annat hushåll, industrier och deponier, och färdas ofta med avloppsvattten och i viss utsträckning dagvatten till reningsverk. Där renas vattnet och en stor del av mikroplasterna ansamlas i det slam som bildas i samband med vattenreningen. Slammet består till stora delar av organiskt material och näring, och betraktas ofta som en resurssnarare än avfall. Cirka 50 % av det slam som bildas i europeiska reningsverk används som gödningsmedel inom jordbruk. Det innebär att slamgivor potentiellt är källor för spridning av stora mängder mikroplast. Idag är kunskapen om mikroplaster i slam relativt liten och en standardiserad metod för extrahering av mikroplaster ur slam saknas, vilket begränsar möjligheten att se problemets magnitud. Detta examensarbete strävar efter att bidra till utformandet av en sådan metod, och undersöker förekomsten av mikroplaster i slam från Ekeby reningsverk i Eskilstuna och Käppalaverket på Lidingö utanför Stockholm med hjälp av två olika metoder. De båda metoderna kombinerar oxidativ nedbrytning med hjälp av fenton-reagens och densitetseparering för att skilja mikroplaster från organiskt och inorganiskt material. Skillnaden mellan de olika metoderna är att den ena innehåller ett oxiderande moment och den andra två. Rapporten behandlar huruvida det extra oxiderande momentet har någon betydande skillnad för utvinningen av mikroplaster ur slam, samt om förekomsten av mikroplasterskiljer sig åt mellan slam från de två olika reningsverken. Resultaten visar att det finns en skillnad mellan de två extraheringsmetoderna samt viss skillnad mellan förekomsten av mikroplaster i de olika slammen. I rapporten diskuteras huruvida skillnaden mellan resultaten av de två olika metoderna beror på det extra oxiderande momentet, eller andra tillkommande effekter. Vad gäller mikroplasters förekomst i slam från de olika reningsverken fastslås att de skiljer sig åt kvantitativt, och i viss mån även kvalitativt.
302

Extracellular Polymeric Substances in Activated Sludge Flocs: Extraction, Identification, and Investigation of Their Link with Cations and Fate in Sludge Digestion

Park, Chul 16 August 2007 (has links)
Extracellular polymeric substances (EPS) in activated sludge are known to account for the flocculent nature of activated sludge. Extensive studies over the last few decades have attempted to extract and characterize activated sludge EPS, but a lack of agreement between studies has also been quite common. The molecular makeup of EPS has, however, remained nearly unexplored, leaving their identity, function, and fate over various stages in the activated sludge system mainly unknown. In spite of their critical involvement in bioflocculation and long history of related research, our understanding of EPS is still greatly limited and better elucidation of their composition and structure is needed. The hypothesis of this research was that activated sludge floc contains different fractions of EPS that are distinguishable by their association with certain cations and that each fraction behaves differently when subjected to shear, aerobic digestion, anaerobic digestion and other processes. In order to examine this floc hypothesis, the research mainly consisted of three sections: 1) development of EPS extraction methods that target cations of interest (divalent cations, especially calcium and magnesium, iron, and aluminum) from activated sludge; 2) molecular investigations on activated sludge EPS using metaproteomic analyses, comprising sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and protein identification by liquid chromatography tandem mass spectrometry (LC/MS/MS), and hemaagglutination (HA)/HA inhibition assays; and 3) investigating the fate of EPS in sludge digestion using SDS-PAGE. Evaluation of prior research and data from preliminary studies led to the development of the three extraction methods that were used to target specific cations from activated sludge and to release their associated EPS into solution. These methods are the cation exchange resin (CER) procedure for extracting Ca²⁺+Mg²⁺, sulfide extraction for removing Fe, and base treatment (pH 10.5) for dissolving Al. The cation selectivity in the three extraction methods, the composition of EPS (protein/polysaccharide), amino acid composition, and a series of sequential extraction data established initial research evidence that activated sludge EPS that are associated with different cations are not the same. SDS-PAGE was successfully applied to study extracellular proteins from several sources of both full- and bench-scale activated sludges. The three extraction methods led to different SDS-PAGE profiles, providing direct evidence that proteins released by the three methods were indeed different sludge proteins. Another important outcome from this stage of research was finding the similarity and differences of extracellular proteins between different sources of activated sludge. SDS-PAGE data showed that many of CER-extracted proteins were well conserved in all the sludges investigated, indicating that a significant fraction of Ca²⁺ and Mg²⁺-bound proteins are universal in activated sludge. On the other hand, protein profiles resulting from sulfide and base extraction were more diverse for different sludges, indicating that Al and Fe and their associated proteins are quite dynamic in activated sludge systems. Protein bands at high densities were analyzed for identifications by LC/MS/MS and several bacterial proteins and polypeptides originating from influent sewage were identified in this study. This was also thought to be the first account of protein identification work for full-scale activated sludge. The analysis of SDS-PAGE post sludge digestion revealed that CER-extracted proteins remained intact in anaerobic digestion while they were degraded in aerobic digestion. While the fate of sulfide-and base-extracted proteins in aerobic digestion was not as clearly resolved, their changes in anaerobic digestion were well determined in this research. Sulfide-extracted protein bands were reduced by anaerobic digestion, indicating that Fe-bound EPS were degraded under anaerobic conditions. While parts of base-extracted proteins disappeared after anaerobic digestion, others became more extractable along with the extraction of new proteins, indicating that the fate of base-extractable proteins, including Al-bound proteins, is more complex in anaerobic digestion than CER-extracted and sulfide-extracted proteins. These results show that Ca²⁺+Mg²⁺, Fe³⁺, and Al³⁺ play unique roles in floc formation and that each cation-associated EPS fraction imparts unique digestion characteristics to activated sludge. Finally, since a considerably different cation content is quite common for different wastewaters, it is postulated that this variability is one important factor that leads to different characteristics of activated sludge and sludge digestibility across facilities. The incorporation of the impact of cations and EPS on floc properties into an activated sludge model might be challenging but will assure a better engineering application of the activated sludge process. / Ph. D.
303

The effects of nickel on the completely mixed activated sludge process

Sujarittanonta, Suthirak 01 August 2012 (has links)
The purpose of this investigation was to conduct batch and continuous flow laboratory experiments with bench scale activated sludge units to determine the effects of nickel on the completely mixed activated sludge process. The model units were located in a constant temperature room maintained at 20±2°C. The batch reactors were operated under acclimated and shock loaded condition with various nickel concentration to determine its effects on the rate of COD removal. The continuous flow units were operated until steady state conditions were obtained at each mean cell residence time studied and then data were recorded for an approximate 7 days period and averaged to obtain one steady state data point. Nickel was added to the waste water at various concentration to determine its effects on COD removal efficiency, degree of nitrification and on the biokinetic constants Ymax and kd. / Ph. D.
304

The effect of mean cell residence time on the dewatering characteristics of a biological sludge

Zentkovich, Terry L. January 1982 (has links)
The effect that mean cell residence time (MCRT) had on the dewaterability of biological sludges was examined in this study. Aeration basin sludge and waste activated sludge from a full scale domestic wastewater treatment facility, in addition to sludges produced from two laboratory scale reactors fed with a synthetic substrate and a primary effluent-dog food mixture, respectively, were used to perform dewatering tests. The sludges were evaluated at various MCRT values for optimal dewatering resistances, optimal conditioning requirements, and optimal compressibility conditions. Specific resistance determinations were made using a 3uchner funnel apparatus to evaluate all of the above mentioned parameters. Also particle size analyses were performed on all sludges to investigate how particle size affected dewatering resistance and conditioner requirements, and also to investigate how MCRT affected particle size. All particle size determinations were made using a HIAC PC-320, twelve channel particle size analyzer. Results from the study revealed that plants can operate under extended aeration and still maintain good sludge dewatering characteristics. Likewise, by varying MCRT shifts in particle size distribution and corresponding changes in dewatering resistance were noted in the laboratory reactors. However, no optimum MCRT with respect to dewatering could be founded. Particle size proved to be the most important parameter affecting dewatering, and it was affected by conditioning, periods of anaerobiosis, and MCRT in the laboratory reactors. / Master of Science
305

The effect of inert biomass support media on activated sludge treatment of a high-strength industrial wastewater

Haseltine, Michael H. 05 December 2009 (has links)
A high strength industrial wastewater was treated in a bench-scale activated sludge reactor modified by the addition of biomass support media to the aeration tank. Two experimental biomass support systems (BSS) and one conventional activated sludge system were operated at different mean cell retention times (mixed liquor MCRTs). Three separate media were tested, NOR-PAC and Linpor used as free-floating supports, and BIONET used as a fixed-bed support. The effect of the media on substrate and oxygen utilization, and solid-liquid separation was investigated. Substantial attached growth did not occur on the NORPAC and BIONET media. The attached biomass concentration in the Linpor systems increased with increased media concentration. The ratio of attached volatile solids to total volatile solids (attached volatile solids + MLVSS) decreased with increased mixed liquor MCRT. The advantages of the BSS would occur at low mixed liquor MCRTs. Both the BSS and control systems achieved greater than 94% COD removal and substrate utilization rates (mg/h) did not significantly change during the experiments. Therefore, both systems were substrate limited. The substrate limitations caused decreased oxygen uptake rates of the attached biomass with increased mixed liquor MCRT. The sludge settling of the Linpor systems was a function of mixed liquor MCRT, filamentous upsets, and the presence of the media. Enhanced settling was observed in the Linpor system only at the 3 day mixed liquor MCRT experiment. / Master of Science
306

Conditioning for shear in sludge dewatering

Buckley, Margaret M. 05 September 2009 (has links)
The purpose of this study was to determine how chemical conditioning agents and mechanical dewatering devices affect sludge dewatering with respect to shear. Bench scale experiments were performed to determine the effect of shear and mole charge on polymer dose requirements using anaerobically digested sludge. Lime, ferric chloride, and polymer were used to condition anaerobically digested sludge to evaluate the influence of these conditioning agents, separately and in combination, on shear resistance. Dewatering studies were performed using a plate and frame press, a centrifuge, and a screw press to determine the amount of shear within each device and to develop a means of estimating polymer dose for each device. It was determined that increased molecular charge of polymer decreased chemical dose requirements and improved shear resistance. Both lime and ferric chloride improved sludge dewatering rates but only ferric chloride conditioned against shear. Ferric chloride addition prior to polymer conditioning improved sludge shear resistance, improved the dewatering rate (CST), and decreased the required polymer dose. The dewatering study using the plate and frame press verified that polymer dose could be estimated using CST values and a Gt value of approximately 30,000. Also, ferric chloride in combination with polymer improved filtrate quality, increased the cake solids concentration, and increased the filtrate volume throughput of sludge conditioned with lower polymer doses than if polymer alone was used. The dewatering study using a high speed centrifuge found that polymer dose could be estimated using CST values at a Gt between 10,000 and 20,000 or by use of the wedge zone simulator. The dewatering study of the screw press found that CST values and the wedge zone simulator under predicted polymer dose. This was thought to be the result of shear in the feed system prior to dewatering. / Master of Science
307

Availability and distribution of nitrogen and phosphorus from sewage sludge in the plant-soil-water continuum

Scott, James D. 24 July 2012 (has links)
Research was conducted in 1984 and 1985 to determine N and P availabilities for barley (Hordeum vulgare L.) and com ( Zea mays L.) grown on four sludge-amended soils. Tests were conducted on the Acredale silt loam (Typic Ochraquall), Bojac loamy sand (Typic Hapludult), Davidson clay loam (Rhodic Paleudult), and Groseclose silt loam (Typic Hapludult) soils. An aerobically·digested sewage sludge from a sewage treatment plant with major industrial irrputs was applied at rates of 0, 42, and 84 dry Mg ha' 1 on the poorly-drained Acredale soil. Rates of 0, 42, 84, 126, 168, and 210 dry Mg ha'1 were applied on the well-drained Bojac, Davidson, and Groseclose soils. The 210 dry Mg haâ 1 sludge rate supplied 3300 and 6600 kg of N and P haâ 1, respectively. A 14-day anaerobic N incubation study indicated that mirreralization varied from approximately nine to four percent of sludge N from the 42 to 210 Mg haâ 1 application rates, respectively. Sludge application increased N uptake (rz = 0.98** to 0.99**) by the 1984 com grown on the three well-drained soils. Nitrogen balance data indicated that quantities of unrecovered N ranged from six to 21 percent where sludge was applied. / Master of Science
308

Performance and Mechanisms of Excess Sludge Reduction in the Cannibal™ Process

Chon, Dong Hyun 08 April 2005 (has links)
In order to study the performance and mechanisms of excess sludge reduction in the activated sludge that incorporates the Cannibal™ Process, laboratory activated sludge systems incorporating an anaerobic bioreactor into the sludge recycle stream were operated. In this study, the solids production in the Cannibal system was about 35-40% of the conventional system under steady state conditions. The reduction in waste sludge was optimized when the interchange rate, (the ratio of sludge fed from the activated sludge system to the bioreactor compared to the total mass in the activated sludge system) was set at about 10%. It was found that the release of protein from the anaerobic bioreactor was greater than that from the aerobic bioreactor. The SOUR data suggested that the released protein from the anaerobic bioreactor was easily degraded when the sludge was returned to the activated sludge system. It was also found that when the proportion of sludge added to the anaerobic bioreactor in batch tests was approximately 10%, the protein release was about 30 mg/L. When the proportion of sludge added was increased to 26 to 41%, the release was reduced to 10 and 6 mg/L, respectively. Within 30 hours, the protein release was complete. This suggests that there is an optimum or maximum amount of recycle or interchange (~10%) for the process to function best. / Master of Science
309

Evaluation of landfill leachate treatability in a modified Ludzack Ettinger activated sludge system

Marickovich, Donald C. 18 April 2009 (has links)
The purpose of this study was to investigate treatment alternatives for a leachate from a municipal landfill in Roanoke County, Virginia. A continuous flow, laboratory scale, single sludge waste treatment system utilizing the Modified Ludzack Ettinger (MLE) nitrification/denitrification process with the addition of phosphorus and methanol was operated to determine its effectiveness in removing total nitrogen, organic compounds and metals from the leachate. The system was compared with the effectiveness of a totally aerobic activated sludge system operated in various configurations and at different mean cell residence times (MCRT’s) with and without the addition of methanol. The ability of activated carbon to remove organics from the leachate was briefly examined. The early results from this study indicated that the MLE process could successfully treat the leachate by removing up to 84% of the total nitrogen present while operating at high MCRT’s (eight days or greater). The MLE process removed as much as 56% of the total nitrogen at the lowest MCRT operated (1.5 days), By comparison, a maximum removal of only 30% was achieved for the completely aerobic activated sludge system operating under the same conditions. The MLE process and the completely aerobic process were not effective in removing the organics from the leachate as evidenced by a leachate COD removal of only 2% to 5%. Limited studies with activated carbon proved successful in substantially reducing the COD from the effluent of the biological treatment systems. The MLE process consistently reduced the iron concentration in the leachate from the average level of 18.6 mg/l to levels below 1.0 mg/l. Towards the end of this 584-day study, there were indications that toxic agents were intermittently entering the leachate from the landfill as evidenced by two episodes of severe nitrification inhibition during operating periods when nitrification should have been essentially complete. This raises doubts concerning the ability of biological nitrification/denitrification to successfully treat the Dixie Caverns landfill leachate on a long-term basis without special treatment for the removal of the unknown toxic components. / Master of Science
310

Molecular characterization of filamentous bacteria isolated from full-scale activated sludge processes

Marrengane, Zinhle January 2007 (has links)
Thesis (M.Tech.: Biotechnology)-Dept. of Biotechnolgy, Durban University of Technology, 2007 xviii, 143 leaves / Activated sludge flocs are responsible for flocculation, settling and dewaterability. It is important to maintain the growth off loc-forming bacteria for efficient sludge settleability and compaction for good quality effluent. Filamentous bacteria on the other hand are believed to provide rigid support network or backbone upon which floc-forming bacteria adhere to form stable activated sludge flocs (Wilderer et al., 2002; Ramothokang et al., 2003). Filamentous bacteria can also be detrimental to the process when they outgrow floc-forming bacteria. Morphologically filamentous bacteria are at an advantage as they have higher outward growth velocity and can extend freely to bulk liquid substrate. Proliferation of filamentous bacteria causes foaming and bulking (Martins et al., 2004). Although chemical alleviation measures to circumvent bulking are present, they are symptomatic (Chang et al., 2004). Eikelboom (1975) developed the first identification keys for the classification of filamentous bacteria that is primarily based on morphological characteristics and microscopic examination. Although very useful, this type of identification has its limitations. For instance some filamentous bacteria can change morphology in response to changes in the environment and although some of them can be morphologically similar they may vary considerably in their physiology and taxonomy (Martins et al., 2004). A vast number of filamentous bacteria are still very poorly understood which could be due to the problems of cultivation due to their slow growing nature and maintenance of cultures (Rossetti et al., 2006). This limitation necessitates a molecular approach to resolve the taxonomy of filamentous bacteria as it is a culture-independent technique which is highly accurate. This project was undertaken to verify the identity of pure cultures of filamentous bacteria isolated previously through the application of molecular techniques. The 16S rDNA are conserved regions in bacterial cells and they can be extracted and specific nucleic acid fragments amplified. Denaturation gradient gel electrophoresis enabled the separation of fragments of identical length but different size and served as an indication of purity (Muyzer et al., 1993).

Page generated in 0.044 seconds